Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 2, pp 341–356 | Cite as

A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents

  • Enda L. BolandEmail author
  • Rosa Shine
  • Nicola Kelly
  • Caoimhe A. Sweeney
  • Peter E. McHugh
Medical Stents: State of the Art and Future Directions

Abstract

The field of percutaneous coronary intervention has witnessed many progressions over the last few decades, more recently with the advancement of fully degradable bioabsorbable stents. Bioabsorbable materials, such as metallic alloys and aliphatic polyesters, have the potential to yield stents which provide temporary support to the blood vessel and allow native healing of the tissue to occur. Many chemical and physical reactions are reported to play a part in the degradation of such bioabsorbable materials, including, but not limited to, corrosion mechanisms for metals and the hydrolysis and crystallization of the backbone chains in polymers. In the design and analysis of bioabsorbable stents it is important to consider the effect of each aspect of the degradation on the material’s in vivo performance. The development of robust computational modelling techniques which fully capture the degradation behaviour of these bioabsorbable materials is a key factor in the design of bioabsorable stents. A critical review of the current computational modelling techniques used in the design and analysis of these next generation devices is presented here, with the main accomplishments and limitations of each technique highlighted.

Keywords

Finite element analysis Computational modelling Biodegradable stent Corrosion Polymer Hydrolysis Magnesium 

Notes

Acknowledgments

The authors wish to acknowledge funding from the Irish Research Council for Science, Engineering and Technology and a Postgraduate Research Fellowship from the College of Engineering and Informatics, NUI Galway.

References

  1. 1.
    Agrawal, C. M., K. F. Haas, D. A. Leopold, and H. G. Clark. Evaluation of poly(l-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13:176–182, 1992.CrossRefPubMedGoogle Scholar
  2. 2.
    Alexis, F. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym. Int. 54:36–46, 2005.CrossRefGoogle Scholar
  3. 3.
    Alvarez-Lopez, M., M. D. Pereda, J. A. DelValle, M. Fernandez-Lorenzo, M. C. Garcia-Alonso, O. A. Ruano, and M. L. Escudero. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 6:1763–1771, 2010.CrossRefPubMedGoogle Scholar
  4. 4.
    Arosio, P., V. Busini, G. Perale, D. Moscatelli, and M. Masi. A new model of resorbable device degradation and drug release—part I: zero order model. Polym. Int. 57:912–920, 2008.CrossRefGoogle Scholar
  5. 5.
    Biotronik, A. G. Safety and clinical performance of the drug eluting absorbable metal scaffold (DREAMS 2nd Generation) in the treatment of subjects with de Novo lesions in native coronary arteries: BIOSOLVE-II. In: ClinicalTrials.gov. Bethesda, MD: National Library of Medicine (US), 2000. Accessed 2015 May 15. https://clinicaltrials.gov/ct2/show/NCT01960504.
  6. 6.
    Bobel, A. C., S. Petisco, J. Ramon Sarasua, W. Wenxin, and P. E. McHugh. Computational bench testing to evaluate the short-term mechanical performance of a polymeric stent. Cardiovasc. Eng. Technol., in press, 2015.Google Scholar
  7. 7.
    Chen, Y., Z. Xu, C. Smith, and J. Sankar. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10:4561–4573, 2014.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen, Y., S. Zhou, and Q. Li. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater. 7:1140–1149, 2011.CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng, Y., S. Deng, P. Chen, and R. Ruan. Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China 4:259–264, 2009.CrossRefGoogle Scholar
  10. 10.
    Da Costa-Mattos, H. S., I. N. Bastos, and J. A. C. P. Gomes. A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride. Corros. Sci. 50:2858–2866, 2008.CrossRefGoogle Scholar
  11. 11.
    Durand, E., T. Sharkawi, G. Leclerc, M. Raveleau, M. van der Leest, M. Vert, and A. Lafont. Head-to-head comparison of a drug-free early programmed dismantling polylactic acid bioresorbable scaffold and a metallic stent in the porcine coronary artery: six-month angiography and optical coherence tomographic follow-up study. Circ. Cardiovasc. Interv. 7:70–79, 2014.CrossRefPubMedGoogle Scholar
  12. 12.
    Farrar, D., and F. J. Buchanan. Chapter 9: modelling of the degradation processes for bioresorbable polymers. In: Degradation Rate of Bioresorbable Materials: Prediction and Evaluation, edited by D. Farrar. Amsterdam: Elsevier, 2008, pp. 183–206.CrossRefGoogle Scholar
  13. 13.
    Ferdous, J., V. B. Kolachalama, and T. Shazly. Impact of polymer structure and composition on fully resorbable endovascular scaffold performance. Acta Biomater. 9:6052–6061, 2013.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Foin, N., R. D. Lee, R. Torii, J. L. Guitierrez-Chico, A. Mattesini, S. Nijjer, S. Sen, R. Petraco, J. E. Davies, C. Di Mario, M. Joner, R. Virmani, and P. Wong. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int. J. Cardiol. 177:800–808, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Food and Drug Administration. ASTM-FDA Workshop on Absorbable Medical Devices:Lessons Learned from Correlations of Bench Testing and Clinical Performance. 2012. http://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences/ucm312601.htm.
  16. 16.
    Friedrich, H. E., and B. L. Mordike. Magnesium Technology. Berlin: Springer, 2006.Google Scholar
  17. 17.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1981.CrossRefGoogle Scholar
  18. 18.
    Gastaldi, D., V. Sassi, L. Petrini, M. Vedani, S. Trasatti, and F. Migliavacca. Continuum damage model for bioresorbable magnesium alloy devices: application to coronary stents. J. Mech. Behav. Biomed. Mater. 4:352–365, 2011.CrossRefPubMedGoogle Scholar
  19. 19.
    Gogas, B. D., V. Farooq, Y. Onuma, and P. W. Serruys. The ABSORB bioresorbable vascular scaffold: an evolution or revolution in interventional cardiology. Hell. J Cardiol 53:301–309, 2012.Google Scholar
  20. 20.
    Gopferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114, 1996.CrossRefPubMedGoogle Scholar
  21. 21.
    Grogan, J. A., D. Gastaldi, M. Castelletti, F. Migliavacca, G. Dubini, and P. E. McHugh. A novel flow chamber for biodegradable alloy assessment in physiologically realistic environments. Rev. Sci. Instrum. 84:094301, 2013.CrossRefPubMedGoogle Scholar
  22. 22.
    Grogan, J. A., S. B. Leen, and P. E. McHugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34:8049–8060, 2013.CrossRefPubMedGoogle Scholar
  23. 23.
    Grogan, J. A., S. B. Leen, and P. E. McHugh. A physical corrosion model for bioabsorbable metal stents. Acta Biomater. 10:2313–2322, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Grogan, J. A., S. B. Leen, and P. E. McHugh. Computational micromechanics of bioabsorbable magnesium stents. J. Mech. Behav. Biomed. Mater. 34:93–105, 2014.CrossRefPubMedGoogle Scholar
  25. 25.
    Grogan, J. A., B. J. O’Brien, S. B. Leen, and P. E. McHugh. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 7:3523–3533, 2011.CrossRefPubMedGoogle Scholar
  26. 26.
    Han, X., and J. Pan. A model for simultaneous crystallisation and biodegradation of biodegradable polymers. Biomaterials 30:423–430, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    Haude, M., R. Erbel, P. Erne, S. Verheye, H. Degen, D. Böse, P. Vermeersch, I. Wijnbergen, N. Weissman, F. Prati, R. Waksman, and J. Koolen. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 381:836–844, 2013.CrossRefPubMedGoogle Scholar
  28. 28.
    Hayman, D., C. Bergerson, S. Miller, M. Moreno, and J. E. Moore. The effect of static and dynamic loading on degradation of PLLA stent fibers. J Biomech Eng 136:4027614, 2014.Google Scholar
  29. 29.
    Hermawan, H., D. Dubé, and D. Mantovani. Developments in metallic biodegradable stents. Acta Biomater. 6:1693–1697, 2010.CrossRefPubMedGoogle Scholar
  30. 30.
    Khan, K. A., and T. El-Sayed. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers. Acta Mech. 224:287–305, 2013.CrossRefGoogle Scholar
  31. 31.
    Lin, Z., J. Luo, Z. Chen, J. Yi, H. Jiang, K. Tu, and L. Wang. A Monte Carlo simulation study of the effect of chain length on the hydrolysis of poly(lactic acid). Chin. J. Polym. Sci. 31:1554–1562, 2013.CrossRefGoogle Scholar
  32. 32.
    Luo, Q., X. Liu, Z. Li, C. Huang, W. Zhang, J. Meng, Z. Chang, and Z. Hua. Degradation model of bioabsorbable cardiovascular stents. PLoS One 9:e110278, 2014.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lyu, S., J. Schley, B. Loy, D. Lind, C. Hobot, R. Sparer, and D. Untereker. Kinetics and time–temperature equivalence of polymer degradation. Biomacromolecules 8:2301–2310, 2007.CrossRefPubMedGoogle Scholar
  34. 34.
    Lyu, S., and D. Untereker. Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 10:4033–4065, 2009.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Mitra, A. K., and D. K. Agrawal. In stent restenosis: bane of the stent era. J. Clin. Pathol. 59:232–239, 2006.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Moore, Jr, J., J. Soares, and K. Rajagopal. Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovasc. Eng. Technol. 1:52–65, 2010.CrossRefGoogle Scholar
  37. 37.
    Muliana, A., and K. R. Rajagopal. Modeling the response of nonlinear viscoelastic biodegradable polymeric stents. Int. J. Solids Struct. 49:989–1000, 2012.CrossRefGoogle Scholar
  38. 38.
    Murphy, J. G., R. S. Schwartz, K. C. Huber, and D. R. Holmes, Jr. Polymeric stents: modern alchemy or the future? J. Invasive Cardiol. 3:144–148, 1991.PubMedGoogle Scholar
  39. 39.
    Okamura, T., P. W. Serruys, and E. Regar. Cardiovascular flashlight. The fate of bioresorbable struts located at a side branch ostium: serial three-dimensional optical coherence tomography assessment. Eur. Heart J. 31:2179, 2010.CrossRefPubMedGoogle Scholar
  40. 40.
    Ong, A. T. L., E. P. McFadden, E. Regar, P. P. T. De Jaegere, R. T. Van Domburg, and P. W. Serruys. Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J. Am. Coll. Cardiol. 45:2088–2092, 2005.CrossRefPubMedGoogle Scholar
  41. 41.
    Ormiston, J. A., and P. W. S. Serruys. Bioabsorbable coronary stents. Circ. Cardiovasc. Interv. 2:255–260, 2009.CrossRefPubMedGoogle Scholar
  42. 42.
    Ormiston, J. A., M. W. Webster, and G. Armstrong. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-l-lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc. Interv. 69:128–131, 2007.CrossRefPubMedGoogle Scholar
  43. 43.
    Perale, G., P. Arosio, D. Moscatelli, V. Barri, M. Muller, S. Maccagnan, and M. Masi. A new model of resorbable device degradation and drug release: transient 1-dimension diffusional model. J. Control Release 136:196–205, 2009.CrossRefPubMedGoogle Scholar
  44. 44.
    Peuster, M., C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962, 2006.CrossRefPubMedGoogle Scholar
  45. 45.
    Peuster, M., P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Pidaparti, R. M., L. Fang, and M. J. Palakal. Computational simulation of multi-pit corrosion process in materials. Comput. Mater. Sci. 41:255–265, 2008.CrossRefGoogle Scholar
  47. 47.
    Pitt, C. G., F. I. Chasalow, Y. M. Hibionada, D. M. Klimas, and A. Schindler. Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone) in vivo. J. Appl. Polym. Sci. 26:3779–3787, 1981.CrossRefGoogle Scholar
  48. 48.
    Prabhu, S., and S. Hossainy. Modeling of degradation and drug release from a biodegradable stent coating. J. Biomed. Mater. Res. A 80:732–741, 2007.CrossRefPubMedGoogle Scholar
  49. 49.
    Raabe, D., and R. C. Becker. Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium. Model. Simul. Mater. Sci. Eng. 8:445–462, 2000.CrossRefGoogle Scholar
  50. 50.
    Rajagopal, K. R., A. R. Srinivasa, and A. S. Wineman. On the shear and bending of a degrading polymer beam. Int. J. Plast. 23:1618–1636, 2007.CrossRefGoogle Scholar
  51. 51.
    Rajagopal, K. R., and A. S. Wineman. A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes. Int. J. Plast. 8:385–395, 1992.CrossRefGoogle Scholar
  52. 52.
    Schaffer, J. E., E. A. Nauman, and L. A. Stanciu. Cold drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of in vitro vascular cytocompatibility. Acta Biomater. 9:8574–8584, 2013.CrossRefPubMedGoogle Scholar
  53. 53.
    Shazly, T., V. B. Kolachalama, J. Ferdous, J. P. Oberhauser, S. Hossainy, and E. R. Edelman. Assessment of material by-product fate from bioresorbable vascular scaffolds. Ann. Biomed. Eng. 40:955–965, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Shirazi, R. N., F. Aldabbagh, A. Erxleben, Y. Rochev, and P. McHugh. Nanomechanical properties of poly(lactic-co-glycolic) acid film during degradation. Acta Biomater. 10:4695–4703, 2014.CrossRefPubMedGoogle Scholar
  55. 55.
    Soares, J. S. Constitutive Modeling for Biodegradable Polymers for Application in Endovascular Stents. Doctoral dissertation, Texas A&M University, 2008.Google Scholar
  56. 56.
    Soares, J. S., J. E. Moore, Jr, and K. R. Rajagopal. Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J. 54:295–301, 2008.CrossRefPubMedGoogle Scholar
  57. 57.
    Soares, J. S., J. E. Moore, and K. R. Rajagopal. Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents. J. Med. Device. 4:41007, 2010.CrossRefGoogle Scholar
  58. 58.
    Soares, J., K. Rajagopal, and J. Moore Jr. Theoretical modeling of cyclically loaded, biodegradable cylinders. In: 3rd European Conference on Computational Mechanics, edited by C. A. Motasoares, J. A. C. Martins, H. C. Rodrigues, J. C. Ambrósio, C. A. B. Pina, C. M. Motasoares, E. B. R. Pereira, and J. Folgado. Netherlands: Springer, 2006, p. 207. doi: 10.1007/1-4020-5370-3_207.CrossRefGoogle Scholar
  59. 59.
    Soares, J. S., K. R. Rajagopal, and J. E. Moore, Jr. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomech. Model. Mechanobiol. 9:177–186, 2010.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Song, G., and A. Atrens. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1:11–33, 1999.CrossRefGoogle Scholar
  61. 61.
    Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012.CrossRefGoogle Scholar
  62. 62.
    Tamai, H., K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404, 2000.CrossRefPubMedGoogle Scholar
  63. 63.
    Tormala, P., T. Pohjonen, and P. Rokkanen. Bioabsorbable polymers: materials technology and surgical applications. Proc. Inst. Mech. Eng. H 212:101–111, 1998.CrossRefPubMedGoogle Scholar
  64. 64.
    Verheye, S., M. Webster, J. Stewart, A. Abizaid, R. Costa, J. Costa, J. Yan, V. Bhat, L. Morrison, S. Toyloy, and J. Ormiston. TCT-563 multi-center, first-in-man evaluation of the myolimus-eluting bioresorbable coronary scaffold: 6-month clinical and imaging results. J. Am. Coll. Cardiol. 60:B163, 2012.CrossRefGoogle Scholar
  65. 65.
    Waksman, R. Absorbable Metal Stent, Clinical Update and DREAMS: Concept and Preclinical Data. Tel-Aviv: Innovations of Cardiovascular Interventions, 2007.Google Scholar
  66. 66.
    Waksman, R., R. Erbel, C. Di Mario, J. Bartunek, B. de Bruyne, F. R. Eberli, P. Erne, M. Haude, M. Horrigan, C. Ilsley, D. Böse, H. Bonnier, J. Koolen, T. F. Lüscher, and N. J. Weissman. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc. Interv. 2:312–320, 2009.CrossRefPubMedGoogle Scholar
  67. 67.
    Waksman, R., R. Pakala, R. Baffour, R. Seabron, D. Hellinga, and F. O. Tio. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J. Interv. Cardiol. 21:15–20, 2008.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang, Y., J. Pan, X. Han, C. Sinka, and L. Ding. A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29:3393–3401, 2008.CrossRefPubMedGoogle Scholar
  69. 69.
    Weir, N. A., F. J. Buchanan, J. F. Orr, and G. R. Dickson. Degradation of poly-l-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc. Inst. Mech. Eng. H 218:307–319, 2004.CrossRefPubMedGoogle Scholar
  70. 70.
    Witte, F., J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018, 2006.CrossRefPubMedGoogle Scholar
  71. 71.
    Wu, W., S. Chen, D. Gastaldi, L. Petrini, D. Mantovani, K. Yang, L. Tan, and F. Migliavacca. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomater. 9:8730–8739, 2013.CrossRefPubMedGoogle Scholar
  72. 72.
    Wu, W., D. Gastaldi, K. Yang, L. Tan, L. Petrini, and F. Migliavacca. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176:1733–1740, 2011.CrossRefGoogle Scholar
  73. 73.
    Wu, W., L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, B. Previtali, and F. Migliavacca. Finite element shape optimization for biodegradable magnesium alloy stents. Ann. Biomed. Eng. 38:2829–2840, 2010.CrossRefPubMedGoogle Scholar
  74. 74.
    Zartner, P., R. Cesnjevar, H. Singer, and M. Weyand. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter. Cardiovasc. Interv. 66:590–594, 2005.CrossRefPubMedGoogle Scholar
  75. 75.
    Zheng, Y. F., X. N. Gu, and F. Witte. Biodegradable metals. Mater. Sci. Eng. R Reports 77:1–34, 2014.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Enda L. Boland
    • 1
    Email author
  • Rosa Shine
    • 1
  • Nicola Kelly
    • 1
  • Caoimhe A. Sweeney
    • 1
  • Peter E. McHugh
    • 1
  1. 1.Biomechanics Research Centre, Biomedical EngineeringNational University of Ireland GalwayGalwayIreland

Personalised recommendations