Annals of Biomedical Engineering

, Volume 44, Issue 1, pp 187–201 | Cite as

An Inverse Finite Element u/p-Formulation to Predict the Unloaded State of In Vivo Biological Soft Tissues

  • Vasileios Vavourakis
  • John  H. Hipwell
  • David J. Hawkes
Computational Biomechanics for Patient-Specific Applications

Abstract

Physically realistic patient-specific biomechanical modelling is of paramount importance for many medical applications, where the geometry of tissues or organs is usually constructed from in vivo images. However, it is common for such biological structures to correspond to a deformed state due to being under external loadings. This necessitates the determination of the stress distribution of the known deformed state through an inverse analysis approach. To achieve this, we propose here a generalised finite element displacement/pressure (u/p)-formulation for evaluating the unloaded configuration of in vivo biological soft tissues that exhibit quasi-incompressible behaviour under finite deformations. Validity and applicability of the proposed numerical framework to practical inverse analysis problems in biomechanics is demonstrated through various numerical examples. The corresponding simulations utilise in vivo measurements of patient-specific geometries derived from different medical imaging modalities, and include recovery of the pressure-free configuration of human aortas and the gravity-free shape of the female breast.

Keywords

Inverse analysis Incompressible FEM Tissue deformation Initial stress Patient-specific modelling 

References

  1. 1.
    Beck, J. V. and K. A. Woodbury. Inverse problems and parameter estimation: integration of measurements and analysis. Meas. Sci. Technol. 9(6):839–847, 1998.CrossRefGoogle Scholar
  2. 2.
    Bols, J., J. Degroote, B. Trachet, B. Verhegghe, P. Segers, and J. Vierendeels. Inverse modelling of image-based patient-specific blood vessels: zero-pressure geometry and in vivo stress incorporation. ESAIM. Math. Modell. Numer. Anal. 47:1059–1075, 2013.CrossRefGoogle Scholar
  3. 3.
    Carter, T., C. Tanner, N. Beechey-Newman, D. Barratt, and D. Hawkes. MR navigated breast surgery: method and initial clinical experience. In Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, pp. 356–363, 2008.Google Scholar
  4. 4.
    Chavan, K. S., B. P. Lamichhane, and B. I. Wohlmuth. Locking-free finite element methods for linear and nonlinear elasticity in 2D and 3D. Comput. Methods Appl. Mech. Eng. 196(41–44):4075–4086, 2007.CrossRefGoogle Scholar
  5. 5.
    Chemla, D., I. Antony, K. Zamani, and A. Nitenberg. Mean aortic pressure is the geometric mean of systolic and diastolic aortic pressure in resting humans. J. Appl. Physiol. 99(6):2278–2284, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Das, A., A. Paul, M. D. Taylor, and R. Banerjee. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm. Biomed. Eng. Online 14(Suppl 1):S18, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    de Putter, S., B. J. B. M. Wolters, M. C. M. Rutten, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40(5):1081–1090, 2007.PubMedCrossRefGoogle Scholar
  8. 8.
    del Palomar, A. P., B. Calvo, J. Herrero, J. López, and M. Doblaré. A finite element model to accurately predict real deformations of the breast. Med. Eng. Phys. 30(9):1089–1097, 2008.PubMedCrossRefGoogle Scholar
  9. 9.
    Eiben, B. L. Han, J. Hipwell, T. Mertzanidou, S. Kabus, T. Buelow, C. Lorenz, G. M. Newstead, H. Abe, M. Keshtgar, S. Ourselin, and D. J. Hawkes. Biomechanically guided prone-to-supine image registration of breast MRI using an estimated reference state. In IEEE 10th International Symposium on Biomedical Imaging, pp. 214–217, 2013.Google Scholar
  10. 10.
    Eiben, B., V. Vavourakis, J. H. Hipwell, S. Kabus, C. Lorenz, T. Buelow, and D. J. Hawkes. Breast deformation modelling: comparison of methods to obtain a patient specific unloaded configuration. In Proceedings of SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9036, 2014, pp. 903615–903618.Google Scholar
  11. 11.
    Gee, M. W., C. Reeps, H. H. Eckstein, and W. A. Wall. Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42(11):1732–1739, 2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Gee M. W., Ch. Förster, and W. A. Wall. A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int. J. Numer. Methods Biomed. Eng. 26(1):52–72, 2010.CrossRefGoogle Scholar
  13. 13.
    Govindjee, S. and P. A. Mihalic. Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 136(1–2):47–57, 1996.CrossRefGoogle Scholar
  14. 14.
    Govindjee, S. and P. A. Mihalic. Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Methods Eng. 43(5):821–838, 1998.CrossRefGoogle Scholar
  15. 15.
    Han, L. J. H. Hipwell, C. Tanner, Z. Taylor, T. Mertzanidou, J. Cardoso, S. Ourselin, and D. J. Hawkes. Development of patient-specific biomechanical models for predicting large breast deformation. Phys. Med. Biol. 57(2):455, 2012.PubMedCrossRefGoogle Scholar
  16. 16.
    Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000.Google Scholar
  17. 17.
    G. R. Joldes, A. Wittek, and K. Miller. A total lagrangian based method for recovering the un-deformed configuration in finite elasticity. Appl. Math. Model. 39:3913–3923, 2015.CrossRefGoogle Scholar
  18. 18.
    Killelea, B. K., J. B. Long, A. B. Chagpar, X. M. Ma, P. R. Soulos, J. S. Ross, and C. P. Gross. Trends and clinical implications of preoperative breast MRI in Medicare beneficiaries with breast cancer. Breast Cancer Res. Treat. 141(1):155–163, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kroon, M. A numerical framework for material characterisation of inhomogeneous hyperelastic membranes by inverse analysis. J. Comput. Appl. Math. 234(2):563–578, 2010.CrossRefGoogle Scholar
  20. 20.
    Lu, J., X. Zhou, and M. L. Raghavan. Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int. J. Numer. Methods Eng. 69(6):1239–1261, 2007.CrossRefGoogle Scholar
  21. 21.
    Lu, J., X. Zhou, and M. L. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3):693–696, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu J., X. Zhou, and M. L. Raghavan. Inverse method of stress analysis for cerebral aneurysms.Biomech. Model. Mechanobiol. 7(6):477–486 2008.PubMedCrossRefGoogle Scholar
  23. 23.
    Malvern L.E. Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs: Prentice Hall, 1977.Google Scholar
  24. 24.
    Marchandise, E., J.-F. Remacle, and C. Geuzaine. Optimal parametrizations for surface remeshing. Eng. Comput. 30(3):383–402, 2014.CrossRefGoogle Scholar
  25. 25.
    Merkx, M.A.G., M. vant Veer, L. Speelman, M. Breeuwer, J. Buth, and F.N. van de Vosse. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis. J. Biomech. 42(14):2369–2373, 2009.PubMedCrossRefGoogle Scholar
  26. 26.
    Metaxa, E., N. Kontopodis, V. Vavourakis, K. Tzirakis, C. V. Ioannou, and Y. Papaharilaou. The influence of intraluminal thrombus on noninvasive abdominal aortic aneurysm wall distensibility measurement. Med. Biol. Eng. Comput. 53(4):299–308, 2015.PubMedCrossRefGoogle Scholar
  27. 27.
    Mosora, F., A. Harmant, C. Bernard, A. Fossion, T. Poche, J. Juchmes, and S. Cescotto. Modelling the arterial wall by finite elements. Arch. Int. Physiol. Biochim. Biophys. 101(3):185–191, 1993.PubMedGoogle Scholar
  28. 28.
    National Collaborating Centre for Cancer. NICE Guideline CG80, Early and locally advanced breast cancer: diagnosis and treatment. National Collaborating Centre for Cancer, February 2009. http://www.nice.org.uk/guidance/cg80/evidence/cg80-early-and-locally-advanced-breast-cancer-full-guideline2.
  29. 29.
    Parker, A., A. T. Schroen, and D. R. Brenin. MRI utilization in newly diagnosed breast cancer: a survey of practicing surgeons. Ann. Surg. Oncol. 20(8):2600–2606, 2013.PubMedCrossRefGoogle Scholar
  30. 30.
    Pilewskie M., and T. A. King. Magnetic resonance imaging in patients with newly diagnosed breast cancer. Cancer 120(14):2080–2089, 2014.PubMedCrossRefGoogle Scholar
  31. 31.
    Raghavan, M. L., M. A. Baoshun, and M. F. Filinger. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng. 34(9):1414–1419, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Raghavan, M. L. and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4):475–482, 2000.PubMedCrossRefGoogle Scholar
  33. 33.
    Rajagopal, V., J. Chung, P. M. F. Nielsen, and M. P. Nash. Finite element modelling of breast biomechanics: directly calculating the reference state. In: IEEE 28th Annual International Conference on Engineering in Medicine and Biology Society, 2006, pp. 420–423.Google Scholar
  34. 34.
    Rajagopal, V., J. H. Chung, D. Bullivant, P. M. F. Nielsen, and M. P. Nash. Determining the finite elasticity reference state from a loaded configuration. Int. J. Numer. Methods Eng. 72(12):1434–1451, 2007.CrossRefGoogle Scholar
  35. 35.
    F. Riveros, S. Chandra, E.A. Finol, T.C. Gasser, and J.F. Rodriguez. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics. Ann. Biomed. Eng. 41(4):694–708, 2013.PubMedCrossRefGoogle Scholar
  36. 36.
    Rodríguez, J. F., C. Ruiz, M. Doblaré, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. ASME J. Biomech. Eng. 130(2):021023–10 2008.CrossRefGoogle Scholar
  37. 37.
    Sussman, T. and K.-J. Bathe. A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26(1–2):357–409, 1987.CrossRefGoogle Scholar
  38. 38.
    Vavourakis, V., Y. Papaharilaou, and J. A. Ekaterinaris. Coupled fluid-structure interaction hemodynamics in a zero-pressure state corrected arterial geometry. J. Biomech. 44(13):2453–2460, 2011.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123(6):536–539, 2001.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36(3):598–604, 2002.PubMedCrossRefGoogle Scholar
  41. 41.
    Xie, J., J. Zhou, and Y. C. Fung. Bending of blood vessel wall: stress–strain laws of the intima-media and adventitial layers. J. Biomech. Eng. 117(1):136–145, 1995.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamada T. and F. Kikuchi. Mixed finite element method for large deformation analysis of incompressible hyperelastic materials. Theor. Appl. Mech. 39:61–73, 1990.Google Scholar
  43. 43.
    Zhou, X., M. L. Raghavan, R. E. Harbaugh, and J. Lu. Patient-specific wall stress analysis in cerebral aneurysms using inverse shell model. Ann. Biomed. Eng. 38(2):478–489, 2010.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.Department of Medical Physics & Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK

Personalised recommendations