Annals of Biomedical Engineering

, Volume 44, Issue 1, pp 174–186 | Cite as

Patient-Specific Surgical Planning, Where Do We Stand? The Example of the Fontan Procedure

  • Diane A. de ZélicourtEmail author
  • Vartan Kurtcuoglu
Computational Biomechanics for Patient-Specific Applications


The Fontan surgery for single ventricle heart defects is a typical example of a clinical intervention in which patient-specific computational modeling can improve patient outcome: with the functional heterogeneity of the presenting patients, which precludes generic solutions, and the clear influence of the surgically-created Fontan connection on hemodynamics, it is acknowledged that individualized computational optimization of the post-operative hemodynamics can be of clinical value. A large body of literature has thus emerged seeking to provide clinically relevant answers and innovative solutions, with an increasing emphasis on patient-specific approaches. In this review we discuss the benefits and challenges of patient-specific simulations for the Fontan surgery, reviewing state of the art solutions and avenues for future development. We first discuss the clinical impact of patient-specific simulations, notably how they have contributed to our understanding of the link between Fontan hemodynamics and patient outcome. This is followed by a survey of methodologies for capturing patient-specific hemodynamics, with an emphasis on the challenges of defining patient-specific boundary conditions and their extension for prediction of post-operative outcome. We conclude with insights into potential future directions, noting that one of the most pressing issues might be the validation of the predictive capabilities of the developed framework.


Single ventricle heart defects Total cavopulmonary connection (TCPC) Computational fluid dynamics (CFD) Numerical simulations Boundary conditions Multi-scale Review 



The authors gratefully acknowledge the financial support provided by the Swiss National Science Foundation through the NCCR Kindey.CH and a Marie Heim-Vögtlin Fellowship (PMPDP2_151255).


  1. 1.
    Baretta, A., C. Corsini, W. Yang, I. E. Vignon-Clementel, A. L. Marsden, J. A. Feinstein, T. Y. Hsia, G. Dubini, F. Migliavacca, and G. Pennati. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos Trans A Math Phys Eng Sci 369(1954):4316–4330, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Corsini, C., C. Baker, E. Kung, S. Schievano, G. Arbia, A. Baretta, G. Biglino, F. Migliavacca, G. Dubini, G. Pennati, A. Marsden, I. Vignon-Clementel, A. Taylor, T. Y. Hsia, and A. Dorfman. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput Methods Biomech Biomed Engin 17(14):1572–1589, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Dasi, L. P., R. KrishnankuttyRema, H. D. Kitajima, K. Pekkan, K. S. Sundareswaran, M. Fogel, S. Sharma, K. Whitehead, K. Kanter, and A. P. Yoganathan. Fontan hemodynamics: importance of pulmonary artery diameter. J. Thorac. Cardiovasc. Surg. 137(3):560–564, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation. J. Biomech. 41(10):2246–2252, 2008.PubMedCrossRefGoogle Scholar
  5. 5.
    Dasi, L. P., K. S. Sundareswaran, C. Sherwin, D. de Zelicourt, K. Kanter, M. A. Fogel, and A. P. Yoganathan. Larger aortic reconstruction corresponds to diminished left pulmonary artery size in patients with single-ventricle physiology. J. Thorac. Cardiovasc. Surg. 139(3):557–561, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    de Zélicourt, D. A. Pulsatile Fontan hemodynamics and patient-specific surgical planning: a numerical investigation. Atlanta: Georgia Institute of Technology, 2010.
  7. 7.
    de Zélicourt, D. A., C. M. Haggerty, K. S. Sundareswaran, B. S. Whited, J. R. Rossignac, K. R. Kanter, J. W. Gaynor, T. L. Spray, F. Sotiropoulos, M. A. Fogel, and A. P. Yoganathan. Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. J. Thorac. Cardiovasc. Surg. 141(5):1170–1177, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fogel, M. A., P. M. Weinberg, A. J. Chin, K. E. Fellows, and E. A. Hoffman. Late ventricular geometry and performance changes of functional single ventricle throughout staged Fontan reconstruction assessed by magnetic resonance imaging. J. Am. Coll. Cardiol. 28(1):212–221, 1996.PubMedCrossRefGoogle Scholar
  9. 9.
    Gewillig, M., S. C. Brown, B. Eyskens, R. Heying, J. Ganame, W. Budts, A. La Gerche, and M. Gorenflo. The Fontan circulation: who controls cardiac output? Interact. Cardiovasc. Thorac. Surg. 10(3):428–433, 2010.PubMedCrossRefGoogle Scholar
  10. 10.
    Haggerty, C. M., D. A. de Zelicourt, M. Restrepo, J. Rossignac, T. L. Spray, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. Comparing pre- and post-operative Fontan hemodynamic simulations: implications for the reliability of surgical planning. Ann. Biomed. Eng. 40(12):2639–2651, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Haggerty, C. M., K. R. Kanter, M. Restrepo, D. A. de Zélicourt, W. J. Parks, J. Rossignac, M. A. Fogel, and A. P. Yoganathan. Simulating hemodynamics of the Fontan y-graft based on patient-specific in vivo connections. J. Thorac. Cardiovasc. Surg. 145(3):663–670, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Haggerty, C. M., M. Restrepo, E. Tang, D. A. de Zelicourt, K. S. Sundareswaran, L. Mirabella, J. Bethel, K. K. Whitehead, M. A. Fogel, and A. P. Yoganathan. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J. Thorac. Cardiovasc. Surg. 148(4):1481–1489, 2014.PubMedCrossRefGoogle Scholar
  13. 13.
    Haggerty, C. M., K. K. Whitehead, J. Bethel, M. A. Fogel, and A. P. Yoganathan. Relationship of single ventricle filling and preload to total cavopulmonary connection hemodynamics. Ann. Thorac. Surg. 99(3):911–917, 2015.PubMedCrossRefGoogle Scholar
  14. 14.
    Itatani, K., K. Miyaji, T. Tomoyasu, Y. Nakahata, K. Ohara, S. Takamoto, and M. Ishii. Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann. Thorac. Surg. 88(2):565–572, 2009; (discussion 72–3).PubMedCrossRefGoogle Scholar
  15. 15.
    Iyengar, A. J., D. S. Winlaw, J. C. Galati, D. S. Celermajer, G. R. Wheaton, T. L. Gentles, L. E. Grigg, R. G. Weintraub, A. Bullock, R. N. Justo, and Y. d’Udekem. Trends in Fontan surgery and risk factors for early adverse outcomes after Fontan surgery: the Australia and New Zealand Fontan registry experience. J. Thorac. Cardiovasc. Surg. 148(2):566–575, 2014.PubMedCrossRefGoogle Scholar
  16. 16.
    Kansy, A., G. Brzezinska-Rajszys, M. Zubrzycka, M. Mirkowicz-Malek, P. Maruszewski, M. Manowska, and B. Maruszewski. Pulmonary artery growth in univentricular physiology patients. Kardiol. Pol. 71(6):581–587, 2013.PubMedCrossRefGoogle Scholar
  17. 17.
    Khairy, P., N. Poirier, and L. A. Mercier. Univentricular heart. Circulation 115(6):800–812, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Khiabani, R. H., M. Restrepo, E. Tang, D. De Zélicourt, F. Sotiropoulos, M. Fogel, and A. P. Yoganathan. Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection. J. Biomech. 45(14):2376–2381, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, S. M. Paridon, M. A. Fogel, and A. P. Yoganathan. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart 101(2):139–143, 2015.PubMedCrossRefGoogle Scholar
  20. 20.
    Korperich, H., P. Barth, J. Gieseke, K. Muller, W. Burchert, H. Esdorn, D. Kececioglu, P. Beerbaum, and K. T. Laser. Impact of respiration on stroke volumes in paediatric controls and in patients after Fontan procedure assessed by mr real-time phase-velocity mapping. Eur. Heart J. Cardiovasc. Imaging 16(2):198–209, 2015.PubMedCrossRefGoogle Scholar
  21. 21.
    Kung, E., A. Baretta, C. Baker, G. Arbia, G. Biglino, C. Corsini, S. Schievano, I. E. Vignon-Clementel, G. Dubini, G. Pennati, A. Taylor, A. Dorfman, A. M. Hlavacek, A. L. Marsden, T. Y. Hsia, and F. Migliavacca. Predictive modeling of the virtual hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases. J. Biomech. 46(2):423–429, 2013.PubMedCrossRefGoogle Scholar
  22. 22.
    Kung, E., G. Pennati, F. Migliavacca, T. Y. Hsia, R. Figliola, A. Marsden, and A. Giardini. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. J. Biomech. Eng. 136(8):081007, 2014.CrossRefGoogle Scholar
  23. 23.
    Kung, E., J. C. Perry, C. Davis, F. Migliavacca, G. Pennati, A. Giardini, T. Y. Hsia, and A. Marsden. Computational modeling of pathophysiologic responses to exercise in Fontan patients. Ann Biomed Eng 43(6):1310–1320, 2014.PubMedGoogle Scholar
  24. 24.
    Liang, F., H. Senzaki, C. Kurishima, K. Sughimoto, R. Inuzuka, and H. Liu. Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study. Am. J. Physiol. Heart Circ. Physiol. 307(7):H1056–H1072, 2014.PubMedCrossRefGoogle Scholar
  25. 25.
    Liang, F., K. Sughimoto, K. Matsuo, H. Liu, and S. Takagi. Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. Int. J. Numer. Method Biomed. Eng. 30(10):1000–1018, 2014.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu, J., Y. Qian, Q. Sun, and M. Umezu. Use of computational fluid dynamics to estimate hemodynamic effects of respiration on hypoplastic left heart syndrome surgery: total cavopulmonary connection treatments. Sci. World J. 2013:131597, 2013.Google Scholar
  27. 27.
    Long, C. C., M. C. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Method Biomed. Eng. 28(5):513–527, 2012.PubMedCrossRefGoogle Scholar
  28. 28.
    Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137(2):394–403, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Marsden, A. L., I. E. Vignon-Clementel, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 35(2):250–263, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Menon, P. G., M. Yoshida, and K. Pekkan. Presurgical evaluation of Fontan connection options for patients with apicocaval juxtaposition using computational fluid dynamics. Artif. Organs 37(1):E1–E8, 2013.PubMedCrossRefGoogle Scholar
  31. 31.
    Mirabella, L., C. M. Haggerty, T. Passerini, M. Piccinelli, A. J. Powell, P. J. Del Nido, A. Veneziani, and A. P. Yoganathan. Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions. Int. J. Numer. Method Biomed. Eng. 29(2):197–216, 2013.PubMedCrossRefGoogle Scholar
  32. 32.
    Mori, M., A. J. Aguirre, R. W. Elder, A. Kashkouli, A. B. Farris, R. M. Ford, and W. M. Book. Beyond a broken heart: circulatory dysfunction in the failing Fontan. Pediatr. Cardiol. 35(4):569–579, 2014.PubMedCrossRefGoogle Scholar
  33. 33.
    Restrepo, M., M. Luffel, J. Sebring, K. Kanter, P. Del Nido, A. Veneziani, J. Rossignac, and A. Yoganathan. Surgical planning of the total cavopulmonary connection: robustness analysis. Ann. Biomed. Eng. 43(6):1321–1334, 2014.PubMedCrossRefGoogle Scholar
  34. 34.
    Restrepo, M., L. Mirabella, E. Tang, C. M. Haggerty, R. H. Khiabani, F. Fynn-Thompson, A. M. Valente, D. B. McElhinney, M. A. Fogel, and A. P. Yoganathan. Fontan pathway growth: a quantitative evaluation of lateral tunnel and extracardiac cavopulmonary connections using serial cardiac magnetic resonance. Ann. Thorac. Surg. 97(3):916–922, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sankaran, S., and A. L. Marsden. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng. 133(3):031001, 2011.PubMedCrossRefGoogle Scholar
  36. 36.
    Srivastava, D., T. Preminger, J. E. Lock, V. Mandell, J. F. Keane, J. E. Mayer, Jr, H. Kozakewich, and P. J. Spevak. Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation 92(5):1217–1222, 1995.PubMedCrossRefGoogle Scholar
  37. 37.
    Sundareswaran, K. S., K. Pekkan, L. P. Dasi, K. Whitehead, S. Sharma, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am. J. Physiol. Heart Circ. Physiol. 295(6):H2427–H2435, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tang, E., M. Restrepo, C. M. Haggerty, L. Mirabella, J. Bethel, K. K. Whitehead, M. A. Fogel, and A. P. Yoganathan. Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC Cardiovasc. Imaging 7(3):215–224, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Troianowski, G., C. A. Taylor, J. A. Feinstein, and I. E. Vignon-Clementel. Three-dimensional simulations in glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J. Biomech. Eng. 133(11):111006, 2011.PubMedCrossRefGoogle Scholar
  40. 40.
    Valentin, A., L. Cardamone, S. Baek, and J. D. Humphrey. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6(32):293–306, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Watrous, R. L., and A. J. Chin. Model-based comparison of the normal and Fontan circulatory systems: Part i: Development of a general purpose, interactive cardiovascular model. World J. Pediatr. Congenit. Heart Surg. 5(3):372–384, 2014.PubMedCrossRefGoogle Scholar
  42. 42.
    Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116(11 Suppl):I165–I171, 2007.PubMedGoogle Scholar
  43. 43.
    Yang, W., F. P. Chan, V. M. Reddy, A. L. Marsden, and J. A. Feinstein. Flow simulations and validation for the first cohort of patients undergoing the y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149(1):247–255, 2015.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang, W., J. A. Feinstein, and A. L. Marsden. Constrained optimization of an idealized y-shaped baffle for the Fontan surgery at rest and exercise. Comput. Methods Appl. Mech. Eng. 199(33–36):2135–2149, 2010.CrossRefGoogle Scholar
  45. 45.
    Yang, W., I. E. Vignon-Clementel, G. Troianowski, V. M. Reddy, J. A. Feinstein, and A. L. Marsden. Hepatic blood flow distribution and performance in conventional and novel y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.The Interface Group, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
  2. 2.Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
  3. 3.National Center of Competence ‘Kidney.CH’ZurichSwitzerland

Personalised recommendations