Annals of Biomedical Engineering

, Volume 44, Issue 2, pp 357–367 | Cite as

Design Optimisation of Coronary Artery Stent Systems

  • Neil W. Bressloff
  • Giorgos Ragkousis
  • Nick Curzen
Medical Stents: State of the Art and Future Directions

Abstract

In recent years, advances in computing power and computational methods have made it possible to perform detailed simulations of the coronary artery stenting procedure and of related virtual tests of performance (including fatigue resistance, corrosion and haemodynamic disturbance). Simultaneously, there has been a growth in systematic computational optimisation studies, largely exploiting the suitability of surrogate modelling methods to time-consuming simulations. To date, systematic optimisation has focussed on stent shape optimisation and has re-affirmed the complexity of the multi-disciplinary, multi-objective problem at hand. Also, surrogate modelling has predominantly involved the method of Kriging. Interestingly, though, optimisation tools, particularly those associated with Kriging, haven’t been used as efficiently as they could have been. This has especially been the case with the way that Kriging predictor functions have been updated during the search for optimal designs. Nonetheless, the potential for future, carefully posed, optimisation strategies has been suitably demonstrated, as described in this review.

Key terms

Computational Modelling Kriging Multi-objective optimization 

Notes

Acknowledgments

The authors would like to thank Medtronic Inc. (Minnesota, USA) for their unrestricted support.

Supplementary material

10439_2015_1373_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1068 kb)

References

  1. 1.
    Amirjani, A., M. Yousefi, and M. Cheshmaroo. Parametrical optimization of stent design; a numerical-based approach. Comput. Mat. Sci. 90:210–220, 2014.CrossRefGoogle Scholar
  2. 2.
    Atherton, M. A., and R. A. Bates. Robust optimization of cardiovascular stents: a comparison of methods. Eng. Optimiz. 36(2):207–217, 2004.CrossRefGoogle Scholar
  3. 3.
    Auricchio, F., M. Di Loreto, and E. Sacco. Finite element analysis of a stenotic artery revascularisation through a stent insertion. Comput. Methods Biomech. Biomed. Eng. 4:249–263, 2001.CrossRefGoogle Scholar
  4. 4.
    Azaouzi, M., N. Lebaal, A. Makradi, and S. Belouettar. Optimization based simulation of self-expanding Nitinol stent. Mater. Des. 50:917–928, 2013.CrossRefGoogle Scholar
  5. 5.
    Blouza, A., L. Dumas and I. M’Baye. Multiobjective optimization of a stent in a fluid-structure context. Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation, pp. 2055–2060, 2008.Google Scholar
  6. 6.
    Booker, A. J., J. E. Dennis, P. D. Frank, D. B. Serafini, and V. Torczon. A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17:1–13, 1999.CrossRefGoogle Scholar
  7. 7.
    Bozsak, F., D. Gonzalez-Rodriguez, Z. Sternberger, P. Belitz, T. Bewley, J-M. Chomaz, and A. I. Barakat. Optimization of drug delivery by drug-eluting stents. PLoS One 10(6):e0130182, 2015. doi: 10.1371/journal.pone.0130182.
  8. 8.
    Caixeta, A., P. Genereux, G. Dangas, and R. Mehran. In-stent restenosis in the drug-eluting stent era. In: Chapter 28 in Oxford Textbook of Interventional Cardiology, edited by S. Redwood, N. Curzen, and M. Thomas. Oxford: Oxford University Press, 2010.Google Scholar
  9. 9.
    Clune, R., D. Kelliher, J. C. Robinson, and J. S. Campbell. NURBS modeling and structural shape optimization of cardiovascular stents. Struct. Multidisc. Optim. 50:159–168, 2014.CrossRefGoogle Scholar
  10. 10.
    Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3(4):374–387, 2012.CrossRefGoogle Scholar
  11. 11.
    De Beule, M., S. Van Cauter, P. Mortier, D. Van Loo, R. Van Impe, and P. Verdonck. Virtual optimization of self-expandable braided wire stents. Med. Eng. Phys. 31:448–453, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Deb, K., and R. B. Agrawal. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2):182–197, 2002.CrossRefGoogle Scholar
  13. 13.
    Deb, K., M. Mohan and S. Mishra. A fast multiobjective evolutionary algorithm for finding well-spread pareto-optimal solutions. KanGAL Report Number 2003002, 2003.Google Scholar
  14. 14.
    Dumoulin, C., and B. Cochelin. Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33:1461–1470, 2000.CrossRefPubMedGoogle Scholar
  15. 15.
    Etave, F., G. Finet, M. Boivin, J. Boyer, G. Rioufol, and G. Thollet. Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–1075, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    FDA. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems. http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071863.htm. 2010. Accessed 1st April 2015.
  17. 17.
    Forrester, A. I. J., A. Sóbester, and A. J. Keane. Engineering Design via Surrogate Modelling: A Practical Guide. Chichester: Wiley, 2008.CrossRefGoogle Scholar
  18. 18.
    Gijsen, F., F. Migliavacca, S. Schievano, L. Socci, L. Petrini, A. Thury, J. Wentzel, A. van der Steen, P. Serruys, and G. Dubini. Simulation of stent deployment in a realistic human coronary artery. BioMed. Eng. OnLine 7:23, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Grogan, J. A., S. B. Leen, and P. E. McHugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34(33):8049–8060, 2013.CrossRefPubMedGoogle Scholar
  20. 20.
    Gundert, T. J., A. L. Marsden, W. Yang, and J. F. LaDisa, Jr. Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134:011002-1–011002-8, 2012.Google Scholar
  21. 21.
    Harewood, F., R. Thornton and P. Sharp. Step change in design: exploring sixty stent design variations overnight. www.altairproductdesign.com, 2011.
  22. 22.
    Harold, J. G., T. A. Bass, T. M. Bashore, et al. ACCF/AHA/SCAI, Update of the clinical competence statement on coronary artery interventional procedures. J. Am. Coll. Cardiol. 128:436–472, 2013.Google Scholar
  23. 23.
    He, Y., N. Duraiswamy, A. O. Frank, and J. E. Moore, Jr. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. ASME J. Biomech. Eng. 127:637–647, 2005.CrossRefGoogle Scholar
  24. 24.
    Johnson, P. M., J. Patel, M. Yeung, and P. Kaul. Intra-coronary imaging modalities. Curr. Treat. Options Cardiovasc. Med. 16:304, 2014.CrossRefPubMedGoogle Scholar
  25. 25.
    Jones, D. R. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4):345–383, 2001.CrossRefGoogle Scholar
  26. 26.
    Krige, D. G. A statistical approach to some basic mine valuation problems on the Wit-watersrand. J. Chem. Metall. Miner. Soc. SA 52(6):119–139, 1951.Google Scholar
  27. 27.
    Levine, G. N., E. R. Bates, J. C. Blankenship, et al. ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J. Am. Coll. Cardiol. 58:e44–e122, 2011.CrossRefPubMedGoogle Scholar
  28. 28.
    Li, H., T. Qiu, B. Zhu, J. Wu, and X. Wang. Design optimization of coronary stent based on finite element models. Sci. World J. 2013:630243, 2013.Google Scholar
  29. 29.
    Li, N., H. Zhang, and H. Ouyang. Shape optimization of coronary artery stent based on a parametric model. Finite Elem. Anal. Des. 45:468–475, 2009.CrossRefGoogle Scholar
  30. 30.
    Lophaven, S., H. Nielsen and J. Søndergaard. DACE—A MATLAB Kriging Toolbox Version 2.0, Technical University of Denmark, Copenhagen, Technical Report IMM-TR-2002-12, 2002.Google Scholar
  31. 31.
    Martin, D., and F. J. Boyle. Computational structural modelling of coronary stent deployment: a review. Comput. Methods Biomech. Biomed. Eng. 14(4):331–348, 2011.CrossRefGoogle Scholar
  32. 32.
    Migliavacca, F., L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811, 2002.CrossRefPubMedGoogle Scholar
  33. 33.
    Morice, M.-C., P. Serruys, J. Sousa, J. Fajadet, E. Ban Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, et al. The RAVEL Study Group. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346:1773–1780, 2002.CrossRefPubMedGoogle Scholar
  34. 34.
    Morlacchi, S., and F. Migliavacca. Modeling stented coronary arteries: where we are, where to go? Ann. Biomed. Eng. 41(7):1428–1444, 2013.CrossRefPubMedGoogle Scholar
  35. 35.
    Morris, M. D., and T. J. Mitchell. Exploratory designs for computational experiments. J. Stat. Plan. Inference 43:381–402, 1995.CrossRefGoogle Scholar
  36. 36.
    Moses, J., M. Leon, J. Popma, P. Fitzgerald, D. Holmes, C. O’Shaughnessy, R. Caputo, D. Kereiakes, D. Williams, P. Teirstein, et al. The SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323, 2003.CrossRefPubMedGoogle Scholar
  37. 37.
    Murphy, J., and F. J. Boyle. Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review. Comput. Biol. Med. 40:408–418, 2010.CrossRefPubMedGoogle Scholar
  38. 38.
    Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimisation of coronary stents. Biomech. Model Mechanobiol. 11(1):61–82, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Pant, S., G. Limbert, N. Curzen, and N. W. Bressloff. Multi-objective design optimisation of coronary stents. Biomaterials 32:7755–7773, 2011.CrossRefPubMedGoogle Scholar
  40. 40.
    Rogers, C., D. Y. Tseng, J. C. Squere, and E. R. Edelman. Balloon-artery interactions during stent placement. A finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378–383, 1999.CrossRefPubMedGoogle Scholar
  41. 41.
    Srinivas, K., T. Nakayama, M. Ohta, S. Obayashi, and T. Yamaguchi. Studies on design optimization of coronary stents. ASME J. Med. Devices 2(1):011004, 2008.CrossRefGoogle Scholar
  42. 42.
    Statnikov, R., and J. Matusov. Multicriteria Analysis in Engineering: Using the PSI Method with MOVI 1.0. Dordrecht: Kluwer Academic Publications, 2002.CrossRefGoogle Scholar
  43. 43.
    Stoeckel, D., C. Bonsignore, and S. Duda. A survey of stent designs. Minim. Invasive Ther. Allied Technol. 11(4):137–147, 2002.CrossRefGoogle Scholar
  44. 44.
    Timmins, L. H., M. R. Moreno, C. A. Meyer, J. C. Criscione, A. Rachev, and J. E. Moore, Jr. Stented artery biomechanics and device design optimization. Med. Biol. Eng. Comput. 45(5):505–513, 2007.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang, W.-Q., D.-K. Liang, D.-Z. Liang, and M. Qi. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 29:21–32, 2006.CrossRefGoogle Scholar
  46. 46.
    Wu, W., L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, B. Previtali, and F. Migliavacca. Finite element shape optimization for biodegradable magnesium alloy stents. Ann. Biomed. Eng. 38(9):2829–2840, 2010.CrossRefPubMedGoogle Scholar
  47. 47.
    Wu, W., D. Z. Yang, Y. Y. Huang, M. Qi, and W. Q. Wang. Topology optimization of a novel stent platform with drug reservoirs. Med. Eng. Phys. 30(9):1177–1185, 2008.CrossRefPubMedGoogle Scholar
  48. 48.
    Yoon, H.-J., and S.-H. Hur. Optimization of stent deployment by intravascular ultrasound. Korean J. Int. Med. 27:30–38, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Neil W. Bressloff
    • 1
  • Giorgos Ragkousis
    • 1
  • Nick Curzen
    • 2
    • 3
  1. 1.Faculty of Engineering & the Environment, Southampton Boldrewood Innovation CampusUniversity of SouthamptonSouthamptonUK
  2. 2.Wessex Cardiothoracic and Vascular Care GroupUniversity Hospital Southampton, NHS Foundation TrustSouthamptonUK
  3. 3.Faculty of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations