Annals of Biomedical Engineering

, Volume 44, Issue 1, pp 258–271 | Cite as

Computational Modeling of Traffic Related Thoracic Injury of a 10-Year-Old Child Using Subject-Specific Modeling Technique

  • Feng ZhuEmail author
  • Binhui Jiang
  • Jingwen Hu
  • Yulong Wang
  • Ming Shen
  • King H. Yang
Computational Biomechanics for Patient-Specific Applications


Traffic injuries have become a major health-related issue to school-aged children. To study this type of injury with numerical simulations, a finite element model was developed to represent the full body of a 10-year-old (YO) child. The model has been validated against test data at both body-part and full-body levels in previous studies. Representing only the average 10-YO child, this model did not include subject-specific attributes, such as the variations in size and shape among different children. In this paper, a new modeling approach was used to morph this baseline model to a subject-specific model, based on anthropometric data collected from pediatric subjects. This mesh-morphing method was then used to rapidly morph the baseline mesh into the subject-specific geometry while maintaining a good mesh quality. The morphed model was subsequently applied to simulate a real-world motor vehicle crash accident. A lung injury observed in the accident was well captured by the subject-specific model. The findings of this study demonstrate the feasibility of the proposed morphing approach to develop subject-specific human models, and confirm their capability in prediction of traffic injuries.


Traffic injury Pediatric model Sample-specific modeling Finite element method 



This study is partially supported by Wayne State University Bioengineering Center and National Science Foundation for Young Scientists of China (Grant Number 51405148). The authors wish to express their gratitude to Mr. Mark Scarboro at the National Highway Traffic Safety Administration for providing CIREN data.


  1. 1.
    Arbogast, K. B., S. Balasubramanian, T. Seacrist, M. R. Maltese, J. F. Garcia-Espana, T. Hopely, E. Constans, F. J. Lopez-Valdes, R. W. Kent, H. Tanji, and K. Higuchi. Comparison of kinematic responses of the head and spine for children and adults in low-speed frontal sled tests. Stapp Car Crash J. 53:329–372, 2009.PubMedGoogle Scholar
  2. 2.
    Ash, J., C. Sherwood, Y. Abdelilah, J. Crandall, D. Parent, and D. Kallieris. Comparison of anthropomorphic test dummies with a pediatric cadaver restrained by a three-point belt in frontal sled tests. Paper presented at: 21st International Technical Conference on the Enhanced Safety of Vehicles (ESV) 2009; Stuttgart, Germany.Google Scholar
  3. 3.
    Belwadi, A., J. H. Siegel, A. Singh, J. A. Smith, K. H. Yang, and A. I. King. Finite element aortic injury reconstruction of near side lateral impacts using real world crash data. J. Biomech. Eng. 134(1):011006, 2012.PubMedCrossRefGoogle Scholar
  4. 4.
    Bose, D., K. Bhalla, L. Rooij, S. Millington, A. Studley, and J. Crandall. Response of the knee joint to the pedestrian impact loading environment. SAE Technical Paper; 2004. No. 2004-01-1608.Google Scholar
  5. 5.
    Cheng, H., L. Obergefell, and A. Rizer. The Development of the GEBOD program. IEEE Biomedical Engineering Conference, Proceedings of the 15th Southern, pp. 251–254, 1996.Google Scholar
  6. 6.
    Dong, L., G. Li, H. Mao, S. Marek, and K. H. Yang. Development and validation of a 10-year-old child ligamentous cervical spine finite element model. Ann. Biomed. Eng. 41(12):2538–2552, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Dong, L., H. Mao, G. Li, and K. H. Yang. Investigation of pediatric neck response and muscle activation in low-speed frontal impacts. Comput. Methods Biomech. Biomed. Eng. 18:1–13, 2014.Google Scholar
  8. 8.
    Durbin, D. R., H. G. Gardner, C. R. Baum, M. D. Dowd, D. R. Durbin, B. E. Ebel, M. B. Ewald, R. Lichenstein, M. A. P. Limbos, J. O’Neil, and E. C. Powell. Policy statement-child passenger safety. Pediatrics 127(4):788–793, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Ewing, C. L., D. J. Thomas, L. M. Patrick, G. Beeler, and M. J. Smith. Living human dynamic response toG x impact acceleration IIAccelerations measured on the head and neck. SAE Technical Paper; 1969. No. 690817.Google Scholar
  10. 10.
    Gayzik, F. S. Development of a Finite Element Based Injury Metric for Pulmonary Contusion. Winston-Salem: Biomedical Engineering, Wake Forest University, 2008.Google Scholar
  11. 11.
    Guillemot, H., B. Besnault, S. Robin, C. Got, J. Y. Le Coz, F. Lavaste, and J.-P. Lassau. Pelvic injuries in side impact collisions: a field accident analysis and dynamic tests on isolated pelvic bones. SAE Technical Paper; 1997. No. 973322.Google Scholar
  12. 12.
    Jiang, B., L. Cao, H. Mao, C. Wagner, S. Marek, and K. H. Yang. Development of a 10-year-old paediatric thorax finite element model validated against cardiopulmonary resuscitation data. Comput. Methods Biomech. Biomed. Eng. 17(11):1185–1197, 2014.CrossRefGoogle Scholar
  13. 13.
    Jiang, B., H. Mao, L. Cao, and K. H. Yang. Experimental validation of pediatric thorax finite element model under dynamic loading condition and analysis of injury. SAE Technical Paper; 2013. No. 2013-01-0456.Google Scholar
  14. 14.
    Jingwen, H., J. D. Rupp, and M. P. Reed. Focusing on vulnerable populations in crashes: recent advances in finite element human models for injury biomechanics research. J Automot. Saf. Energy. 3(4):295, 2012.Google Scholar
  15. 15.
    Kent, R., F. J. Lopez-Valdes, J. Lamp, S. Lau, D. Parent, J. Kerrigan, D. Lessley, and R. Salzar. Characterization of the pediatic chest and abdomen using three post-mortem human subjects. Paper presented at: 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV) 2011; Washington, DC.Google Scholar
  16. 16.
    Kent, R., R. Salzar, J. Kerrigan, D. Parent, D. Lessley, M. Sochor, J. F. Luck, A. Loyd, Y. Song, and R. Nightingale. Pediatric thoracoabdominal biomechanics. Stapp Car Crash J. 53:373–401, 2009.PubMedGoogle Scholar
  17. 17.
    Kerrigan, J., D. Drinkwater, C. Kam, D. Murphy, B. Ivarsson, J. Crandall, and J. Patrie. Tolerance of the human leg and thigh in dynamic latero-medial bending. Int. J. Crashworthiness 9(6):607–623, 2004.CrossRefGoogle Scholar
  18. 18.
    Klein, K. F., J. Hu, M. P. Reed, C. N. Hoff, and J. D. Rupp. Development and validation of statistical models of femur geometry for use with parametric finite element models. Ann. Biomed. Eng. 2015. doi: 10.1007/s10439-015-1307-6.PubMedGoogle Scholar
  19. 19.
    Li, Z., J. Hu, M. P. Reed, J. D. Rupp, C. N. Hoff, J. Zhang, and B. Cheng. Development, validation, and application of a parametric pediatric head finite element model for impact simulations. Ann. Biomed. Eng. 39(12):2984–2997, 2011.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, Z., J. Hu, and J. Zhang. Comparison of different radial basis functions in developing subject-specific infant head finite element models for injury biomechanics study. Paper presented at: ASME 2012 Summer Bioengineering Conference 2012; Fajardo, Puerto Rico.Google Scholar
  21. 21.
    Loyd, A. M. Studies of the human head from neonate to adult: an inertial, geometrical and structural analysis with comparisons to the ATD head, Duke University; 2011.Google Scholar
  22. 22.
    Luck, J. F. The biomechanics of the perinatal, neonatal and pediatric cervical spine: investigation, Duke University; 2012.Google Scholar
  23. 23.
    Luck, J. F., R. W. Nightingale, A. M. Loyd, M. T. Prange, A. T. Dibb, Y. Song, L. Fronheiser, and B. S. Myers. Tensile mechanical properties of the perinatal and pediatric PMHS osteoligamentous cervical spine. Stapp Car Crash J. 52:107–134, 2008.PubMedGoogle Scholar
  24. 24.
    Luck, J. F., R. W. Nightingale, Y. Song, J. R. Kait, A. M. Loyd, B. S. Myers, R. Cameron, and D. Bass. Tensile failure properties of the perinatal, neonatal, and pediatric cadaveric cervical spine. Spine. 38(1):E1–E12, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Maltese, M. R., T. Castner, D. Niles, A. Nishisaki, S. Balasubramanian, J. Nysaether, R. Sutton, V. Nadkarni, and K. B. Arbogast. Methods for determining pediatric thoracic force-deflection characteristics from cardiopulmonary resuscitation. Stapp Car Crash J. 52:83–105, 2008.PubMedGoogle Scholar
  26. 26.
    Mao, H., S. Holcombe, M. Shen, X. Jin, C. D. Wagner, S. C. Wang, K. H. Yang, and A. I. King. Development of a 10-year-old full body geometric dataset for computational modeling. Ann. Biomed. Eng. 42(10):2143–2155, 2014.PubMedCrossRefGoogle Scholar
  27. 27.
    Nahum, A. M., R. Smith, and C. C. Ward. Intracranial pressure dynamics during head impact. SAE Technical Paper; 1977. No. 770922.Google Scholar
  28. 28.
    Niehoff, P., and H. C. Gabler. The accuracy of WinSmash delta-V estimates: the influence of vehicle type, stiffness, and impact mode. Annu Proc Assoc Adv Automot Med 50:73–89, 2006.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nightingale, R. W., V. C. Chancey, D. Ottaviano, J. F. Luck, L. Tran, M. Prange, and B. S. Myers. Flexion and extension structural properties and strengths for male cervical spine segments. J. Biomech. 40(3):535–542, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Okamoto, M., Y. Takahashi, F. Mori, M. Hitosugi, J. Madeley, J. Ivarsson, and J. R. Crandall. Development of finite element model for child pedestrian protection. Paper presented at: 18th International Technical Conference on the Enhanced Safety Vehicles (ESV)2003; Nagoya, Japan.Google Scholar
  31. 31.
    Ouyang, J., W. D. Zhao, Y. Q. Xu, W. S. Chen, and S. Z. Zhong. Thoracic impact testing of pediatric cadaveric subjects. J. Trauma 61(6):1492–1500, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Ouyang, J., Q.-A. Zhu, and W.-D. Zhao. Biomechanical character of extremity long bones in children and its significance. Chin. J. Clin. Anat. 6:030, 2003.Google Scholar
  33. 33.
    Ouyang, J., Q. Zhu, W. Zhao, Y. Xu, W. Chen, and S. Zhong. Biomechanical assessment of the pediatric cervical spine under bending and tensile loading. Spine (Phila Pa 1976) 30(24):E716–E723, 2005.CrossRefGoogle Scholar
  34. 34.
    Ouyang, J., Q. A. Zhu, W. D. Zhao, Y. Q. Xu, W. S. Chen, and S. Z. Zhong. Experimental cadaveric study of lateral impact of the pelvis in children. Acad. J. First Med. Coll. PLA. 2003;23(5):397–401, 408.Google Scholar
  35. 35.
    Ruan, J., S. Rouhana, and S. Barbat. Development of a six-year old digital human body model for vehicle safety analysis. Paper presented at: the 34th FISITA World Automotive Congress 2012; Beijing, China.Google Scholar
  36. 36.
    Shen, M., F. Zhu, B. Jiang, V. Sanghavi, H. Fan, Y. Cai, Z. Wang, A. Kalra, X. Jin, C. Chou, and K. Yang. Development and a limited of whole-body finite element pedestrian and occupant models of a 10-year-old child. Paper presented at: The International Research Council On Biomechanics Of Injury Conference (IRCOBI) 2015; Lyon, France.Google Scholar
  37. 37.
    Shen, M., F. Zhu, H. Mao, H. Fan, N. Mone, V. Sanghavi, X. Jin, A. Kalra, C. Chou, and K. Yang. Finite element modeling of 10 year-old child pelvis & lower extremities with growth plates for pedestrian protection. Int. J. Veh. Saf. 2015 (in press).Google Scholar
  38. 38.
    Shi, X., L. Cao, M. P. Reed, J. D. Rupp, and J. Hu. Effects of obesity on occupant responses in frontal crashes: a simulation analysis using human body models. Comput. Methods Biomech. Biomed. Eng. 18(12):1280–1292, 2015.CrossRefGoogle Scholar
  39. 39.
    Shi, X. N., L. B. Cao, M. P. Reed, J. D. Rupp, C. N. Hoff, and J. W. Hu. A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index. J. Biomech. 47(10):2277–2285, 2014.PubMedCrossRefGoogle Scholar
  40. 40.
    Shivanna, K. H., S. C. Tadepalli, and N. M. Grosland. Feature-based multiblock finite element mesh generation. Comput. Aided Des. 42(12):1108–1116, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Snyder, R. G. Anthropometry of infants, children, and youths to age 18 for product safety design. U.S. Consumer Product Safety Commission; 1977. Final Report.Google Scholar
  42. 42.
    Thunnissen, J., J. Wismans, C. Ewing, and D. Thomas. Human volunteer head-neck response in frontal flexion: a new analysis. SAE Technical Paper; 1995. No. 952721.Google Scholar
  43. 43.
    Wagner, C., S. Deshpande, X. Jin, H. Mao, L. Zhang, K. H. Yang, and A. I. King. Digital child project: numerical model development: Part IIdentify pediatric anatomy for model development. Bioengineering Center, Wayne State University; 2009. Final Report.Google Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Feng Zhu
    • 1
    Email author
  • Binhui Jiang
    • 1
    • 2
  • Jingwen Hu
    • 3
    • 4
  • Yulong Wang
    • 2
    • 3
  • Ming Shen
    • 1
  • King H. Yang
    • 1
  1. 1.Bioengineering CenterWayne State UniversityDetroitUSA
  2. 2.Key State Lab of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaChina
  3. 3.University of Michigan Transportation Research InstituteAnn ArborUSA
  4. 4.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations