Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 12, pp 2953–2966 | Cite as

Marker-Free Tracking of Facet Capsule Motion Using Polarization-Sensitive Optical Coherence Tomography

  • Amy A. Claeson
  • Yi-Jou Yeh
  • Adam J. Black
  • Taner Akkin
  • Victor H. Barocas
Article

Abstract

We proposed and tested a method by which surface strains of biological tissues can be captured without the use of fiducial markers by instead, utilizing the inherent structure of the tissue. We used polarization-sensitive optical coherence tomography (PS OCT) to obtain volumetric data through the thickness and across a partial surface of the lumbar facet capsular ligament during three cases of static bending. Reflectivity and phase retardance were calculated from two polarization channels, and a power spectrum analysis was performed on each a-line to extract the dominant banding frequency (a measure of degree of fiber alignment) through the maximum value of the power spectrum (maximum power). Maximum powers of all a-lines for each case were used to create 2D visualizations, which were subsequently tracked via digital image correlation. In-plane strains were calculated from measured 2D deformations and converted to 3D surface strains by including out-of-plane motion obtained from the PS OCT image. In-plane strains correlated with 3D strains (R 2 ≥ 0.95). Using PS OCT for marker-free motion tracking of biological tissues is a promising new technique because it relies on the structural characteristics of the tissue to monitor displacement instead of external fiducial markers.

Keywords

Biomechanics Image correlation Polarized light Spine 

Notes

Acknowledgment

This work was supported by the National Institutes of Health (U01 EB016638 and T32 AR050938). Computations were made possible by a resources grant from the Minnesota Supercomputing Institute, and we thank Dr. Theoden Netoff for valuable conversations and insight.

References

  1. 1.
    Ahearne, M., P. O. Bagnaninchi, Y. Yang, and A. J. El Haj. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J. Tissue Eng. Regen. Med. 2:521–524, 2008.CrossRefPubMedGoogle Scholar
  2. 2.
    Aksan, A., J. J. McGrath, and D. S. Nielubowicz, Jr. Thermal damage prediction for collagenous tissues part I: a clinically relevant numerical simulation incorporating heating rate dependent denaturation. J. Biomech. Eng. 127:85–97, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Al-Qaisi, M. K., and T. Akkin. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber. Opt. Express 18:3392–3403, 2010.CrossRefPubMedGoogle Scholar
  4. 4.
    Andersson, G. B. J. Epidemiological features of chronic low-back pain. Lancet 354:581, 1999.CrossRefPubMedGoogle Scholar
  5. 5.
    Bayly, P. V., E. H. Clayton, and G. M. Genin. Quantitative imaging methods for the development and validation of brain biomechanics models. Annu. Rev. Biomed. Eng. 14:369–396, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Boyle, J. J., M. Kume, M. A. Wyczalkowski, L. A. Taber, R. B. Pless, Y. Xia, G. M. Genin, and S. Thomopoulos. Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues. J. R. Soc. Interface 11:20140685, 2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Cense, B., N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12:2435–2447, 2004.CrossRefPubMedGoogle Scholar
  8. 8.
    Chandran, P. L., and V. H. Barocas. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J. Biomech. Eng. 126:152–166, 2004.CrossRefPubMedGoogle Scholar
  9. 9.
    Chao, C. Y., G. Y. Ng, K. K. Cheung, Y. P. Zheng, L. K. Wang, and G. L. Cheing. In vivo and ex vivo approaches to studying the biomechanical properties of healing wounds in rat skin. J. Biomech. Eng. 135:101009, 2013.CrossRefPubMedGoogle Scholar
  10. 10.
    Cohen, S. P. Pathogenesis, diagnosis, and treatment of lumbar zygapophysial (facet) joint pain. Anesthesiology 106:591, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    De Boer, J., S. Srinivas, A. Malekafzali, Z. Chen, and J. Nelson. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express 3:212–218, 1998.CrossRefPubMedGoogle Scholar
  12. 12.
    Dorrer, C., N. Belabas, J. Likforman, and M. Joffre. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J. Opt. Soc. A 17:1795, 2000.CrossRefGoogle Scholar
  13. 13.
    Filas, B. A., I. R. Efimov, and L. A. Taber. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat. Rec. (Hoboken) 290:1057–1068, 2007.CrossRefGoogle Scholar
  14. 14.
    Filas, B. A., A. K. Knutsen, P. V. Bayly, and L. A. Taber. A new method for measuring deformation of folding surfaces during morphogenesis. J. Biomech. Eng. 130:061010, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Greenleaf, J. F., M. Fatemi, and M. Insana. Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5:57–78, 2003.CrossRefPubMedGoogle Scholar
  16. 16.
    Ianuzzi, A., J. S. Little, J. B. Chiu, A. Baitner, G. Kawchuk, and P. S. Khalsa. Human lumbar facet joint capsule strains: I. During physiological motions. Spine J. 4:141–152, 2004.CrossRefPubMedGoogle Scholar
  17. 17.
    Johnson, G. M. The sensory and sympathetic nerve supply within the cervical spine: review of recent observations. Man. Ther. 9:71–76, 2004.CrossRefPubMedGoogle Scholar
  18. 18.
    Kozanek, M., S. Wang, P. G. Passias, Q. Xia, G. Li, M. Bono, K. B. Wood, and G. Li. Range of motion and orientation of the lumbar facet joints in vivo. Spine (Phila Pa. 1976) 34:E689–E696, 2009.CrossRefGoogle Scholar
  19. 19.
    Lee, D. J., and B. A. Winkelstein. The failure response of the human cervical facet capsular ligament during facet joint retraction. J. Biomech. 45:2325–2329, 2012.CrossRefPubMedGoogle Scholar
  20. 20.
    Li, P., X. Yin, L. Shi, A. Liu, S. Rugonyi, and R. Wang. Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography. IEEE Trans. Biomed. Eng. 58: 10.1109/TBME.2011.2153851. Epub 2011 May 12, 2011.
  21. 21.
    Liu, D., and E. S. Ebbini. Viscoelastic property measurement in thin tissue constructs using ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55:368–383, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Lorenz, M. Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine (Philadelphia, Pa. 1976) 8:122, 1983.CrossRefGoogle Scholar
  23. 23.
    McKnight, A. L., J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman. MR elastography of breast cancer: preliminary results. Am. J. Roentgenol. 178:1411–1417, 2002.CrossRefGoogle Scholar
  24. 24.
    Nagel, T. M., J. L. Zitnay, V. H. Barocas, and D. J. Nuckley. Quantification of continuous in vivo flexion-extension kinematics and intervertebral strains. Eur. Spine J. 23:754–761, 2014.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Okotie, G., S. Duenwald-Kuehl, H. Kobayashi, M. J. Wu, and R. Vanderby. Tendon strain measurements with dynamic ultrasound images: evaluation of digital image correlation. J. Biomech. Eng. 134:024504, 2012.CrossRefPubMedGoogle Scholar
  26. 26.
    Quinn, K. P. Detection of altered collagen fiber alignment in the cervical facet capsule after whiplash-like joint retraction. Ann. Biomed. Eng. 39:2163, 2011.CrossRefPubMedGoogle Scholar
  27. 27.
    Quinn, K. P., K. E. Lee, C. C. Ahaghotu, and B. A. Winkelstein. Structural changes in the cervical facet capsular ligament: potential contributions to pain following subfailure loading. Stapp Car Crash J. 51:169–187, 2007.PubMedGoogle Scholar
  28. 28.
    Quinn, K. P., and B. A. Winkelstein. Vector correlation technique for pixel-wise detection of collagen fiber realignment during injurious tensile loading. J. Biomed. Opt. 14:054010, 2009.CrossRefPubMedGoogle Scholar
  29. 29.
    Raghupathy, R., C. Witzenburg, S. P. Lake, E. A. Sander, and V. H. Barocas. Identification of regional mechanical anisotropy in soft tissue analogs. J. Biomech. Eng. 133:091011, 2011.CrossRefPubMedGoogle Scholar
  30. 30.
    Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675, 2012.CrossRefPubMedGoogle Scholar
  31. 31.
    Schriefl, A. J., H. Wolinski, P. Regitnig, S. D. Kohlwein, and G. A. Holzapfel. An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues. J. R. Soc. Interface 10:20120760, 2012.CrossRefPubMedGoogle Scholar
  32. 32.
    Silver, F. H., Y. P. Kato, M. Ohno, and A. J. Wasserman. Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J. Long. Term. Eff. Med. Implants 2:165–198, 1992.PubMedGoogle Scholar
  33. 33.
    Smith, R. M., A. J. Black, S. S. Velamakanni, T. Akkin, and E. G. Tolkacheva. Visualizing the complex 3D geometry of the perfusion border zone in isolated rabbit heart. Appl. Opt. 51:2713–2721, 2012.CrossRefPubMedGoogle Scholar
  34. 34.
    Tower, T. T., and R. T. Tranquillo. Alignment maps of tissues: I. Microscopic elliptical polarimetry. Biophys. J. 81:2954–2963, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Tower, T. T., and R. T. Tranquillo. Alignment maps of tissues: II. Fast harmonic analysis for imaging. Biophys. J. 81:2964–2971, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Wang, H., A. Black, J. Zhu, T. W. Stigen, M. Al Qaisi, T. Netoff, A. Abosch, and T. Akkin. Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. Neuroimage 58:984–992, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Witzenburg, C. M., R. Y. Dhume, S. P. Lake, V. H. Barocas. Automatic segmentation of mechanically inhomogeneous tissues based on deformation gradient jump. IEEE Trans. Med. Imag. Submitted.Google Scholar
  38. 38.
    Yamashita, T., Y. Minaki, A. C. Ozaktay, J. M. Cavanaugh, and A. I. King. A morphological study of the fibrous capsule of the human lumbar facet joint. Spine (Philadelphia, Pa. 1976) 21:538–543, 1996.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Amy A. Claeson
    • 1
  • Yi-Jou Yeh
    • 2
  • Adam J. Black
    • 1
  • Taner Akkin
    • 1
  • Victor H. Barocas
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Electrical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations