Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 7, pp 1531–1542 | Cite as

In Silico Investigation of Angiogenesis with Growth and Stress Generation Coupled to Local Extracellular Matrix Density

  • Lowell T. Edgar
  • James B. Hoying
  • Jeffrey A. WeissEmail author
Article

Abstract

Mechanical interactions during angiogenesis, i.e., traction applied by neovessels to the extracellular matrix and the corresponding deformation, are important regulators of growth and neovascularization. We have previously designed, implemented, and validated a coupled model of angiogenesis in which a discrete microvessel growth model interacts with a continuous finite element mesh through the application of local remodeling sprout stresses (Edgar et al. in Biomech Model Mechanobiol, 2014). However, the initial implementation of this framework does not take matrix density into account when determined these remodeling stresses and is therefore insufficient for the study of angiogenesis within heterogeneous matrix environments such as those found in vivo. The objective of this study was to implement sensitivity to matrix density in the active stress generation within AngioFE in order to allow the study of angiogenic growth within a heterogeneous density environment. We accomplished this by scaling active sprout stresses relative to local matrix density using a scaling factor previously determined from experimental data. We then exercised the new functionality of the model by simulating angiogenesis within four different scenarios: homogeneous density, a narrow gap model, and matrix density gradient, and a construct subjected to repeated loading/unloading and preconditioning. These numerical experiments predicted heterogeneous matrix density in the initially homogeneous case, the closure and alignment of microvessels along a low-density gap, the formation of a unique cap-like structure during angiogenesis within a density gradient, and the alignment of microvessels in the absence of applied load due to preconditioning. The result of these in silico investigations demonstrate how matrix heterogeneity affects neovascularization and matrix deformation and provides a platform for studying angiogenesis in complicated and multi-faceted mechanical environments that microvessels experience in vivo.

Keywords

Angiogenesis Extracellular matrix Cellular mechanics Cell–matrix interactions Finite element modeling Growth modeling 

Notes

Acknowledgments

Financial support from National Institutes of Health #R01HL077683, R01GM083925 and R01EB015133 is gratefully acknowledged.

Conflict of interest

The authors state no conflicting interests.

Supplementary material

Supplementary material 1 (AVI 30066 kb)

Supplementary material 2 (AVI 28269 kb)

Supplementary material 3 (AVI 28526 kb)

Supplementary material 4 (AVI 39882 kb)

References

  1. 1.
    Annex, B. H. Therapeutic angiogenesis for critical limb ischaemia. Nat. Rev. Cardiol. 10:387–396, 2013.PubMedCrossRefGoogle Scholar
  2. 2.
    Aritan S, Oyadiji SO, and Bartlett RM. The in vivo mechanical properties of muscular bulk tissue. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, pp. 5259–5262, 2009.Google Scholar
  3. 3.
    Ateshian, G. A., S. Maas, and J. A. Weiss. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J. Biomech. Eng. 135:111001, 2013.PubMedCrossRefGoogle Scholar
  4. 4.
    Bouhadir, K. H., and D. J. Mooney. Promoting angiogenesis in engineered tissues. J. Drug Target. 9:397–406, 2001.PubMedCrossRefGoogle Scholar
  5. 5.
    Califano, J., and C. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1:122–132, 2008.CrossRefGoogle Scholar
  6. 6.
    Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3:68–75, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chang, C. C., L. Krishnan, S. S. Nunes, K. H. Church, L. T. Edgar, et al. Determinants of microvascular network topologies in implanted neovasculatures. Arterioscler. Thromb. Vasc. Biol. 32:5–14, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Conway, E. M., D. Collen, and P. Carmeliet. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49:507–521, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Cummings, C. L., D. Gawlitta, R. M. Nerem, and J. P. Stegemann. Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures. Biomaterials 25:3699–3706, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Edgar, L. T., S. C. Sibole, C. J. Underwood, J. E. Guilkey, and J. A. Weiss. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput. Methods Biomech. Biomed. Eng. 16:790–801, 2013.CrossRefGoogle Scholar
  11. 11.
    Edgar, L. T., J. B. Hoying, U. Utzinger, C. J. Underwood, L. Krishnan, et al. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J. Biomech. Eng. 136:021001, 2014.PubMedCrossRefGoogle Scholar
  12. 12.
    Edgar, L. T., S. A. Maas, J. E. Guilkey, and J. A. Weiss. A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro. Biomech. Model. Mechanobiol. 2014. doi: 10.1007/s10237-014-0635-z.PubMedGoogle Scholar
  13. 13.
    Edgar, L. T., C. J. Underwood, J. E. Guilkey, J. B. Hoying, and J. A. Weiss. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One 9:e85178, 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Folkman, J. Angiogenesis and angiogenesis inhibition: an overview. EXS. 79:1–8, 1997.PubMedGoogle Scholar
  15. 15.
    Ghajar, C. M., X. Chen, J. W. Harris, V. Suresh, C. C. Hughes, et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J . 94:1930–1941, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ho, S. P., S. J. Marshall, M. I. Ryder, and G. W. Marshall. The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials 28:5238–5245, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.PubMedCrossRefGoogle Scholar
  18. 18.
    Hoying, J. B., C. A. Boswell, and S. K. Williams. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell. Dev. Biol. Anim. 32:409–419, 1996.PubMedCrossRefGoogle Scholar
  19. 19.
    Khurana, R., M. Simons, J. F. Martin, and I. C. Zachary. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112:1813–1824, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, B. S., E. J. Kim, J. S. Choi, J. H. Jeong, C. H. Jo, and Y. W. Cho. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J. Biomed. Mater. Res. A 102:4044–4054, 2014.PubMedCrossRefGoogle Scholar
  21. 21.
    Kirilova, M., S. Stoytchev, D. Pashkouleva, and V. Kavardzhikov. Experimental study of the mechanical properties of human abdominal fascia. Med. Eng. Phys. 33:1–6, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Kniazeva, E., and A. J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297:C179–C187, 2009.PubMedCrossRefGoogle Scholar
  23. 23.
    Kniazeva, E., S. Kachgal, and A. J. Putnam. Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng. A 17:905–914, 2011.CrossRefGoogle Scholar
  24. 24.
    Kraning-Rush, C. M., J. P. Califano, and C. A. Reinhart-King. Cellular traction stresses increase with increasing metastatic potential. PLoS ONE 7:e32572, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Krishnan, L., J. A. Weiss, M. D. Wessman, and J. B. Hoying. Design and application of a test system for viscoelastic characterization of collagen gels. Tissue Eng. 10:241–252, 2004.PubMedCrossRefGoogle Scholar
  26. 26.
    Krishnan, L., J. B. Hoying, H. Nguyen, H. Song, and J. A. Weiss. Interaction of angiogenic microvessels with the extracellular matrix. Am. J. Physiol. Heart Circ. Physiol. 293:H3650–H3658, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Krishnan, L., C. J. Underwood, S. Maas, B. J. Ellis, T. C. Kode, et al. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc. Res. 78:324–332, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lin, S., N. Sangaj, T. Razafiarison, C. Zhang, and S. Varghese. Influence of physical properties of biomaterials on cellular behavior. Pharm. Res. 28:1422–1430, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79:144–152, 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lu, H. H., and S. Thomopoulos. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15:201–226, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Maas SA. WinFiber3D. Musculoskeletal Research Laboratories, University of Utah. http://mrl.sci.utah.edu/software/winfiber3d. 2007–2011.
  32. 32.
    Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134:011005, 2012.PubMedCrossRefGoogle Scholar
  33. 33.
    Moffat, K. L., W. H. Sun, P. E. Pena, N. O. Chahine, S. B. Doty, et al. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl. Acad. Sci. USA 105:7947–7952, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Nirmalanandhan, V. S., N. Juncosa-Melvin, J. T. Shearn, G. P. Boivin, M. T. Galloway, et al. Combined effects of scaffold stiffening and mechanical preconditioning cycles on construct biomechanics, gene expression, and tendon repair biomechanics. Tissue Eng. A 15:2103–2111, 2009.CrossRefGoogle Scholar
  35. 35.
    Nishida, N., H. Yano, T. Nishida, T. Kamura, and M. Kojiro. Angiogenesis in cancer. Vasc. Health Risk Manag. 2:213–219, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.PubMedCrossRefGoogle Scholar
  37. 37.
    Phelps, E. A., and A. J. Garcia. Engineering more than a cell: vascularization strategies in tissue engineering. Curr. Opin. Biotechnol. 21:704–709, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Pittman, R. N. Oxygen transport and exchange in the microcirculation. Microcirculation. 12:59–70, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002.PubMedCrossRefGoogle Scholar
  40. 40.
    Shiu, Y. T., J. A. Weiss, J. B. Hoying, M. N. Iwamoto, I. S. Joung, and C. T. Quam. The role of mechanical stresses in angiogenesis. Crit. Rev. Biomed. Eng. 33:431–510, 2005.PubMedCrossRefGoogle Scholar
  41. 41.
    Sieminski, A. L., R. P. Hebbel, and K. J. Gooch. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297:574–584, 2004.PubMedCrossRefGoogle Scholar
  42. 42.
    Tonnesen MG, Feng X, and Clark RA. Angiogenesis in wound healing. In: The Journal of Investigative Dermatology. Symposium Proceedings/the Society for Investigative Dermatology, Inc. [and] European Society for Dermatological Research, vol. 5, 2000, pp. 40–46.Google Scholar
  43. 43.
    Underwood, C. J., L. T. Edgar, J. B. Hoying, and J. A. Weiss. Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 307:H152–H164, 2014.PubMedCrossRefGoogle Scholar
  44. 44.
    Vernon, R. B., and E. H. Sage. A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57:118–133, 1999.PubMedCrossRefGoogle Scholar
  45. 45.
    Wood, G. C., and M. K. Keech. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem. J. 75:588–598, 1960.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Wu, J., Z. Mao, H. Tan, L. Han, T. Ren, and C. Gao. Gradient biomaterials and their influences on cell migration. Interface Focus. 2:337–355, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13:1443–1453, 2007.PubMedCrossRefGoogle Scholar
  48. 48.
    Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34, 2005.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Lowell T. Edgar
    • 1
  • James B. Hoying
    • 2
  • Jeffrey A. Weiss
    • 1
    Email author
  1. 1.Department of Bioengineering and Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA
  2. 2.Division of Cardiovascular Therapeutics, Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleUSA

Personalised recommendations