Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 11, pp 2630–2641 | Cite as

Effect of Intensified Decellularization of Equine Carotid Arteries on Scaffold Biomechanics and Cytotoxicity

  • Ulrike BöerEmail author
  • Luis G. Hurtado-Aguilar
  • Melanie Klingenberg
  • Skadi Lau
  • Stefan Jockenhoevel
  • Axel Haverich
  • Mathias Wilhelmi
Article

Abstract

Decellularized equine carotid arteries (dEAC) are suggested to represent an alternative for alloplastic vascular grafts in haemodialysis patients to achieve vascular access. Recently it was shown that intensified detergent treatment completely removed cellular components from dEAC and thereby significantly reduced matrix immunogenicity. However, detergents may also affect matrix composition and stability and render scaffolds cytotoxic. Therefore, intensively decellularized carotids (int-dEAC) were now evaluated for their biomechanical characteristics (suture retention strength, burst pressure and circumferential compliance at arterial and venous systolic and diastolic pressure), matrix components (collagen and glycosaminoglycan content) and indirect and direct cytotoxicity (WST-8 assay and endothelial cell seeding) and compared with native (n-EAC) and conventionally decellularized carotids (con-dEAC). Both decellularization protocols comparably reduced matrix compliance (venous pressure compliance: 32.2 and 27.4% of n-EAC; p < 0.01 and arterial pressure compliance: 26.8 and 23.7% of n-EAC, p < 0.01) but had no effect on suture retention strength and burst pressure. Matrix characterization revealed unchanged collagen contents but a 39.0% (con-dEAC) and 26.4% (int-dEAC, p < 0.01) reduction of glycosaminoglycans, respectively. Cytotoxicity was not observed in either dEAC matrix which was also displayed by an intact endothelial lining after seeding. Thus, even intensified decellularization generates matrix scaffolds highly suitable for vascular tissue engineering purposes, e.g., the generation of haemodialysis shunts.

Keywords

Vascular graft Detergents Compliance Burst pressure Suture retention strength Extracellular matrix 

Notes

Acknowledgments

(a) There were no contributions that do not justify authorship (b) We thank S. Reuss and M. Harder for the conductance of the Picogreen assay and R. Abedian for his help with the sGAG determination. (c) The work was funded by the “Else Kroener-Fresenius foundation”, Germany. (d) No conflict of interest exists.

Supplementary material

10439_2015_1328_MOESM1_ESM.tif (737 kb)
Supplemental figure S1: Custom-made burst chamber device comprised of an aluminum chamber with a central hole through which the pressure is applied on the sample and with a side entrance for the monitoring of the pressure. Supplementary material 1 (TIFF 737 kb)
10439_2015_1328_MOESM2_ESM.tif (1 mb)
Supplemental figure S2: Mechanical tester for suture retention strength (SRT) test with fixed decellularized equine carotid artery under low tension (A) or near rupture (B). Supplementary material 2 (TIFF 1071 kb)
10439_2015_1328_MOESM3_ESM.tif (900 kb)
Supplemental figure S3: Custom-made device for circumferential compliance determination. A: Compliance chamber with fixed decellularized equine carotid artery. B: Pressure unit for the generation of pulses with a small piston driven by a linear motor. Supplementary material 3 (TIFF 900 kb)

References

  1. 1.
    Albers, F. J. Causes of hemodialysis access failure. Adv. Ren. Replace. Ther. 1:107–118, 1994.PubMedGoogle Scholar
  2. 2.
    Badylak, S. F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann. Biomed. Eng. 42:1517–1527, 2014.CrossRefPubMedGoogle Scholar
  3. 3.
    Ballyk, P. D., C. Walsh, J. Butany, and M. Ojha. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 31:229–237, 1998.CrossRefPubMedGoogle Scholar
  4. 4.
    Barra, J. G., R. L. Armentano, J. Levenson, E. I. Fischer, R. H. Pichel, and A. Simon. Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circ. Res. 73:1040–1050, 1993.CrossRefPubMedGoogle Scholar
  5. 5.
    Boeer, U., F. F. Buettner, M. Klingenberg, G. C. Antonopoulos, H. Meyer, A. Haverich, and M. Wilhelmi. Immunogenicity of intensively decellularized equine carotid arteries is conferred by the extracellular matrix protein collagen type VI. PLoS One 9:e105964, 2014.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Boer, U., A. Lohrenz, M. Klingenberg, A. Pich, A. Haverich, and M. Wilhelmi. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials 32:9730–9737, 2011.CrossRefPubMedGoogle Scholar
  7. 7.
    Boer, U., C. Spengler, D. Jonigk, M. Klingenberg, C. Schrimpf, S. Lutzner, M. Harder, H. H. Kreipe, A. Haverich, and M. Wilhelmi. Coating decellularized equine carotid arteries with CCN1 improves cellular repopulation, local biocompatibility, and immune response in sheep. Tissue Eng. A 19:1829–1842, 2013.CrossRefGoogle Scholar
  8. 8.
    Boer, U., C. Spengler, M. Klingenberg, D. Jonigk, M. Harder, H. H. Kreipe, A. Haverich, and M. Wilhelmi. Cytotoxic effects of polyhexanide on cellular repopulation and calcification of decellularized equine carotids in vitro and in vivo. Int. J. Artif. Organs 36:184–194, 2013.CrossRefPubMedGoogle Scholar
  9. 9.
    Cebotari, S., I. Tudorache, T. Jaekel, A. Hilfiker, S. Dorfman, W. Ternes, A. Haverich, and A. Lichtenberg. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif. Organs 34:206–210, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Cigliano, A., A. Gandaglia, A. J. Lepedda, E. Zinellu, F. Naso, A. Gastaldello, P. Aguiari, P. De Muro, G. Gerosa, M. Spina, and M. Formato. Fine structure of glycosaminoglycans from fresh and decellularized porcine cardiac valves and pericardium. Biochem. Res. Int. 2012:979351, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Conklin, B. S., E. R. Richter, K. L. Kreutziger, D. S. Zhong, and C. Chen. Development and evaluation of a novel decellularized vascular xenograft. Med. Eng. Phys. 24:173–183, 2002.CrossRefPubMedGoogle Scholar
  12. 12.
    Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Dahl, S. L., J. Koh, V. Prabhakar, and L. E. Niklason. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 12:659–666, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Diamantouros, S. E., L. G. Hurtado-Aguilar, T. Schmitz-Rode, P. Mela, and S. Jockenhoevel. Pulsatile perfusion bioreactor system for durability testing and compliance estimation of tissue engineered vascular grafts. Ann. Biomed. Eng. 41:1979–1989, 2013.CrossRefPubMedGoogle Scholar
  15. 15.
    Edwards, C. A., and W. D. O’Brien, Jr. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin. Chim. Acta 104:161–167, 1980.CrossRefPubMedGoogle Scholar
  16. 16.
    Faulk, D. M., C. A. Carruthers, H. J. Warner, C. R. Kramer, J. E. Reing, L. Zhang, A. D’Amore, and S. F. Badylak. The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater. 10(1):183–193, 2013.CrossRefPubMedGoogle Scholar
  17. 17.
    Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. Decellularization of tissues and organs. Biomaterials 27:3675–3683, 2006.PubMedGoogle Scholar
  18. 18.
    Green, E. M., J. C. Mansfield, J. S. Bell, and C. P. Winlove. The structure and micromechanics of elastic tissue. Interface Focus 4:20130058, 2014.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Heine, J., A. Schmiedl, S. Cebotari, M. Karck, H. Mertsching, A. Haverich, and K. Kallenbach. Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach: preclinical comparative biomechanical studies. Artif. Organs 35:930–940, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Huang, A. H., and L. E. Niklason. Engineering of arteries in vitro. Cell. Mol. Life Sci. 71:2103–2118, 2014.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kapadia, M. R., D. A. Popowich, and M. R. Kibbe. Modified prosthetic vascular conduits. Circulation 117:1873–1882, 2008.CrossRefPubMedGoogle Scholar
  22. 22.
    Kasimir, M. T., G. Weigel, J. Sharma, E. Rieder, G. Seebacher, E. Wolner, and P. Simon. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb. Haemost. 94:562–567, 2005.PubMedGoogle Scholar
  23. 23.
    Kennealey, P. T., N. Elias, M. Hertl, D. S. Ko, R. F. Saidi, J. F. Markmann, E. E. Smoot, D. A. Schoenfeld, and T. Kawai. A prospective, randomized comparison of bovine carotid artery and expanded polytetrafluoroethylene for permanent hemodialysis vascular access. J. Vasc. Surg. 53:1640–1648, 2011.CrossRefPubMedGoogle Scholar
  24. 24.
    Keynton, R. S., M. M. Evancho, R. L. Sims, N. V. Rodway, A. Gobin, and S. E. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J. Biomech. Eng. 123:464–473, 2001.CrossRefPubMedGoogle Scholar
  25. 25.
    Koenneker, S., O. E. Teebken, M. Bonehie, M. Pflaum, S. Jockenhoevel, A. Haverich, and M. H. Wilhelmi. A biological alternative to alloplastic grafts in dialysis therapy: evaluation of an autologised bioartificial haemodialysis shunt vessel in a sheep model. Eur. J. Vasc. Endovasc. Surg. 40:810–816, 2010.CrossRefPubMedGoogle Scholar
  26. 26.
    Lichtenberg, A., S. Cebotari, I. Tudorache, G. Sturz, M. Winterhalter, A. Hilfiker, and A. Haverich. Flow-dependent re-endothelialization of tissue-engineered heart valves. J. Heart Valve Dis. 15:287–293, 2006; (discussion 293-284).PubMedGoogle Scholar
  27. 27.
    Marlatt, K. L., A. S. Kelly, J. Steinberger, and D. R. Dengel. The influence of gender on carotid artery compliance and distensibility in children and adults. J. Clin. Ultrasound 41:340–346, 2013.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Mulisch, M., and U. Welsch (eds.). Romeis – Mikroskopische Technik. Heidelberg: Spektrum Akademischer Verlag Heidelberg, 2010.Google Scholar
  29. 29.
    Murase, Y., Y. Narita, H. Kagami, K. Miyamoto, Y. Ueda, M. Ueda, and T. Murohara. Evaluation of compliance and stiffness of decellularized tissues as scaffolds for tissue-engineered small caliber vascular grafts using intravascular ultrasound. ASAIO J. 52:450–455, 2006.CrossRefPubMedGoogle Scholar
  30. 30.
    Pellegata, A. F., M. A. Asnaghi, I. Stefani, A. Maestroni, S. Maestroni, T. Dominioni, S. Zonta, G. Zerbini, and S. Mantero. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. Biomed. Res. Int. 2013:918753, 2013.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Perez, D. R., F. F. Damberger, and K. Wuthrich. Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein. J. Mol. Biol. 400:121–128, 2010.CrossRefPubMedGoogle Scholar
  32. 32.
    Qing, L. L., H. Zhao, and L. L. Liu. Progress on low susceptibility mechanisms of transmissible spongiform encephalopathies. Dongwuxue Yanjiu 35:436–445, 2014.PubMedGoogle Scholar
  33. 33.
    Roy-Chaudhury, P., M. El-Khatib, B. Campos-Naciff, D. Wadehra, K. Ramani, M. Leesar, M. Mistry, Y. Wang, J. S. Chan, T. Lee, and R. Munda. Back to the future: how biology and technology could change the role of PTFE grafts in vascular access management. Semin. Dial. 25:495–504, 2012.CrossRefPubMedGoogle Scholar
  34. 34.
    Roy, S., P. Silacci, and N. Stergiopulos. Biomechanical properties of decellularized porcine common carotid arteries. Am. J. Physiol. Heart Circ. Physiol. 289:H1567–H1576, 2005.CrossRefPubMedGoogle Scholar
  35. 35.
    Santoro, D., F. Benedetto, P. Mondello, N. Pipito, D. Barilla, F. Spinelli, C. A. Ricciardi, V. Cernaro, and M. Buemi. Vascular access for hemodialysis: current perspectives. Int. J. Nephrol. Renovasc. Dis. 7:281–294, 2014.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Schmidt, C. E., and J. M. Baier. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231, 2000.CrossRefPubMedGoogle Scholar
  37. 37.
    Shoemaker, P. A., D. Schneider, M. C. Lee, and Y. C. Fung. A constitutive model for two-dimensional soft tissues and its application to experimental data. J. Biomech. 19:695–702, 1986.CrossRefPubMedGoogle Scholar
  38. 38.
    Silver, F. H., I. Horvath, and D. J. Foran. Viscoelasticity of the vessel wall: the role of collagen and elastic fibers. Crit. Rev. Biomed. Eng. 29:279–301, 2001.CrossRefPubMedGoogle Scholar
  39. 39.
    Sonoda, H., S. Urayama, K. Takamizawa, Y. Nakayama, C. Uyama, H. Yasui, and T. Matsuda. Compliant design of artificial graft: compliance determination by new digital X-ray imaging system-based method. J. Biomed. Mater. Res. 60:191–195, 2002.CrossRefPubMedGoogle Scholar
  40. 40.
    Tillman, B. W., S. K. Yazdani, L. P. Neff, M. A. Corriere, G. J. Christ, S. Soker, A. Atala, R. L. Geary, and J. J. Yoo. Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture. J. Vasc. Surg. 56:783–793, 2012.CrossRefPubMedGoogle Scholar
  41. 41.
    Tschoeke, B., T. C. Flanagan, S. Koch, M. S. Harwoko, T. Deichmann, V. Ella, J. S. Sachweh, M. Kellomaki, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. A 15:1909–1918, 2009.CrossRefGoogle Scholar
  42. 42.
    Verbeke, F. H., M. Agharazii, P. Boutouyrie, B. Pannier, A. P. Guerin, and G. M. London. Local shear stress and brachial artery functions in end-stage renal disease. J. Am. Soc. Nephrol. 18:621–628, 2007.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang, X. N., C. Z. Chen, M. Yang, and Y. J. Gu. Implantation of decellularized small-caliber vascular xenografts with and without surface heparin treatment. Artif. Organs 31:99–104, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Weston, M. W., K. Rhee, and J. M. Tarbell. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis. J. Biomech. 29:187–198, 1996.CrossRefPubMedGoogle Scholar
  45. 45.
    Wilhelmi, M. H., and A. Haverich. Materials used for hemodialysis vascular access: current strategies and a call to action. Graft 6:6–15, 2003.CrossRefGoogle Scholar
  46. 46.
    Williams, C., J. Liao, E. M. Joyce, B. Wang, J. B. Leach, M. S. Sacks, and J. Y. Wong. Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomater. 5:993–1005, 2009.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Wilshaw, S. P., J. Kearney, J. Fisher, and E. Ingham. Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue Eng. A 14:463–472, 2008.CrossRefGoogle Scholar
  48. 48.
    Zhao, Y., S. Zhang, J. Zhou, J. Wang, M. Zhen, Y. Liu, J. Chen, and Z. Qi. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 31:296–307, 2010.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhou, J., O. Fritze, M. Schleicher, H. P. Wendel, K. Schenke-Layland, C. Harasztosi, S. Hu, and U. A. Stock. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31:2549–2554, 2010.CrossRefPubMedGoogle Scholar
  50. 50.
    Zou, Y., and Y. Zhang. Mechanical evaluation of decellularized porcine thoracic aorta. J. Surg. Res. 175:359–368, 2012.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Ulrike Böer
    • 1
    • 2
  • Luis G. Hurtado-Aguilar
    • 3
  • Melanie Klingenberg
    • 1
    • 2
  • Skadi Lau
    • 1
    • 2
  • Stefan Jockenhoevel
    • 3
  • Axel Haverich
    • 1
    • 2
  • Mathias Wilhelmi
    • 1
    • 2
  1. 1.GMP-Model Laboratory for Tissue EngineeringHannoverGermany
  2. 2.Division for Cardiac-, Thoracic-, Transplantation- and Vascular SurgeryHannover Medical SchoolHannoverGermany
  3. 3.Department of Tissue Engineering and Textile ImplantsAME - Institute of Applied Medical Engineering, Helmholtz InstituteAachenGermany

Personalised recommendations