Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 10, pp 2538–2551 | Cite as

Patient-Specific Airway Wall Remodeling in Chronic Lung Disease

  • Mona Eskandari
  • Ware G. Kuschner
  • Ellen Kuhl
Article

Abstract

Chronic lung disease affects more than a quarter of the adult population; yet, the mechanics of the airways are poorly understood. The pathophysiology of chronic lung disease is commonly characterized by mucosal growth and smooth muscle contraction of the airways, which initiate an inward folding of the mucosal layer and progressive airflow obstruction. Since the degree of obstruction is closely correlated with the number of folds, mucosal folding has been extensively studied in idealized circular cross sections. However, airflow obstruction has never been studied in real airway geometries; the behavior of imperfect, non-cylindrical, continuously branching airways remains unknown. Here we model the effects of chronic lung disease using the nonlinear field theories of mechanics supplemented by the theory of finite growth. We perform finite element analysis of patient-specific Y-branch segments created from magnetic resonance images. We demonstrate that the mucosal folding pattern is insensitive to the specific airway geometry, but that it critically depends on the mucosal and submucosal stiffness, thickness, and loading mechanism. Our results suggests that patient-specific airway models with inherent geometric imperfections are more sensitive to obstruction than idealized circular models. Our models help to explain the pathophysiology of airway obstruction in chronic lung disease and hold promise to improve the diagnostics and treatment of asthma, bronchitis, chronic obstructive pulmonary disease, and respiratory failure.

Keywords

Chronic lung disease Airway remodeling Bronchoconstriction Asthma Bronchitis Finite element analysis Patient-specific modeling 

Notes

Acknowledgments

We thank Alexander Zöllner for support with creating the initial finite element discretization. Additionally, we would like to thank Dr. Ann Leung and Marc Sofilos at Stanford University’s Department of Radiology for providing the patient-specific images and guidance, and Ken Mix and David Rhey at Altair HyperMesh for their helpful technical support. This study was supported by the National Science Foundation Graduate Research Fellowship and by the Stanford Graduate Fellowship to Mona Eskandari and by the National Science Foundation CAREER award CMMI 0952021 and by the National Institutes of Health grant U54 GM072970 to Ellen Kuhl.

References

  1. 1.
    Abaqus 6.13. Analysis User’s Manual. 2013. Simulia. Dassault Systèmes.Google Scholar
  2. 2.
    Ambrosi, D., G. A. Ateshian, E. M. Arruda, S. C. Cowin, J. Dumais, A. Goriely, G. A. Holzapfel, J. D. Humphrey, R. Kemkemer, E. Kuhl, J. E. Olberding, L. A. Taber, and K. Garikipati. Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59:863–883, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Asthma Statistics. Asthma mortality rates have been steadily increasing since the 1970s, 2013. http://www.achooallergy.com/asthma- statistics.asp.
  4. 4.
    Bai, A., D. H. Eidel, J. C. Hogg, A. L. James, R. K. Lambert, M. S. Ludwig, M. Martin, D. M. McDonald, W. A. Mitzner, M. Okazawa, R. J. Pack, P. D. Paré, R. R. Schellenberg, H. A. Tiddens, E. M. Wagner, and D. Yager. Proposed nomenclature for quantifying subdivisions of the bronchial wall. J. Appl. Physiol. 77:1011–1014, 1994.PubMedGoogle Scholar
  5. 5.
    Bai, T. R., and D. A. Knight. Structural changes in the airways in asthma: observations and consequences. Clin. Sci. 108:463–477, 2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Baillargeon, B., N. Rebelo, D. D. Fox, R. L. Taylor, and E. Kuhl: The Living Heart Project: a robust and integrative simulator for human heart function. Eur. J. Mech. A 48:38–47, 2014.CrossRefGoogle Scholar
  7. 7.
    Balbi, V., and P. Ciarletta. Morpho-elasticity of intestinal villi. J. R. Soc. Interface 10:20130109, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Baraldo, S., G. Turato, and M. Saetta. Pathophysiology of the small airways in chronic obstructive pulmonary disease. Respiration 84:89–97, 2012.CrossRefPubMedGoogle Scholar
  9. 9.
    Barnett, S. B., and T. A. Nurmagambetov. Costs of asthma in the United States: 2002–2007. J. Allergy Clin. Immunol. 127:145–152, 2011.CrossRefPubMedGoogle Scholar
  10. 10.
    Bousquet, J., and P. Jeffery. Asthma from bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit Care Med. 161:1720–1745, 2000.CrossRefPubMedGoogle Scholar
  11. 11.
    Brackel, H. J., O. F. Pedersen, P. G. Mulder, S. E. Overbeek, K. F. Kerrebijn, and J. M. Bogaard. Central airways behave more stiffly during forced expiration in patients with asthma. Am. J. Respir. Crit Care Med. 162:896–904, 2000.CrossRefPubMedGoogle Scholar
  12. 12.
    Budday, S., C. Raybaud, and E. Kuhl. A mechanical model predicts morphological abnormalities in the developing human brain. Sci. Rep. 4:5644, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Budday, S., P. Steinmann, and E. Kuhl. The role of mechanics during brain development. J. Mech. Phys. Solids 72:75–92, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Busse, W.W., S. Banks-Schlegel, and S. E. Wenzel. Pathophysiology of severe asthma. J. Allergy Clin. Immunol. 106:1033–1042, 2000.CrossRefPubMedGoogle Scholar
  15. 15.
    Cao, Y. P., B. Li, and X. Q. Feng. Surface wrinkling and folding of core-shell soft cylinders. Soft Matter 8:556–562, 2012.CrossRefGoogle Scholar
  16. 16.
    Carroll, N. G., S. Perry, A. Karkhanis, S. Harji, J. Butt, A. L. James, and F. H. Y. Green. The airway longitudinal elastic fiber network and mucosal folding in patients with asthma. Am. J. Respir. Crit Care Med. 161:244–248, 2000.CrossRefPubMedGoogle Scholar
  17. 17.
    Ciarletta, P., V. Balbi, and E. Kuhl. Pattern selection in growing tubular tissues. Phys. Rev. Lett. 113:248101, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Ciarletta, P., and M. BenAmar. Growth instabilities and folding in tubular organs: a variational method in non-linear elasticity. Int. J. Non-Linear Mech. 47:248–257, 2012.CrossRefGoogle Scholar
  19. 19.
    Codd, S. L., R. K. Lambert, M. R. Alley, and R. J. Pack. Tensile stiffness of ovine tracheal wall. J. Appl. Phys. 76:2627–2635, 1994.CrossRefGoogle Scholar
  20. 20.
    Eskandari, M., M. R. Pfaller, and E. Kuhl. On the role of mechanics in chronic lung disease. Materials. 6:5639–5658, 2013.CrossRefGoogle Scholar
  21. 21.
    Garikipati, K. The kinematics of biological growth. Appl. Mech. Rev. 62:030801, 2009.CrossRefGoogle Scholar
  22. 22.
    Gillis, H. L., and K. R. Lutchen. How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: A morphometric model. Ann. Biomed. Eng. 27:14–22, 1999.CrossRefPubMedGoogle Scholar
  23. 23.
    Göktepe, S., and E. Kuhl. Electromechanics of the heart—a unified approach to the strongly coupled excitation-contraction problem. Comput Mech. 45:227–243, 2010.CrossRefGoogle Scholar
  24. 24.
    Goriely, A., M. G. D. Geers, G. A. Holzapfel, J. Jayamohan, A. Jerusalem, S. Sivaloganathan, W. Squier, J. A. W. van Dommelen, S. Waters, and E. Kuhl. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Mod Mechanobiol., 2015. Available online first. DOI: 10.1007/s10237-015-0662-4.
  25. 25.
    Goriely, A., and R. Vandiver. On the mechanical stability of growing arteries. IMA J. Appl. Math. 75:549–570, 2010.CrossRefGoogle Scholar
  26. 26.
    Gunst, S. J., and J. Q. Stropp. Pressure–volume and length–stress relationships in canine bronchi in vitro. J. Appl. Physiol. 64:2522–2531, 1988.PubMedGoogle Scholar
  27. 27.
    Heistracher, T., and W. Hofmann. Physiologically realistic models of bronchial airway bifurcations. J. Aerosol Sci. 26:597–509, 1995.CrossRefGoogle Scholar
  28. 28.
    Himpel, G., E. Kuhl, A. Menzel, and P. Steinmann. Computational modeling of isotropic multiplicative growth. Comput. Mod. Eng. Sci. 8:119–134, 2005.Google Scholar
  29. 29.
    Hogg, J. C. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 364:709–721, 2004.CrossRefPubMedGoogle Scholar
  30. 30.
    Hogg, J. C., F. Chu, S. Utokaparch, R. Woods, W. M. Elliott, L. Buzatu, R. M. Cherniack, R. M. Rogers, F. C. Sciurba, H. O. Coxson, and P. D. Pare. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350:2645–2653, 2004.CrossRefPubMedGoogle Scholar
  31. 31.
    Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000.Google Scholar
  32. 32.
    Howatson Tawhai, M., A. J. Pullan, and P. J. Hunger. Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28:793–802, 2000.CrossRefGoogle Scholar
  33. 33.
    Hrousis, C. A., B. R. Wiggs, J. M. Drazen, D. M. Parks, and R. D. Kamm. Mucosal folding in biologic vessels. J. Biomech. Eng. 124:334–341, 2002.CrossRefPubMedGoogle Scholar
  34. 34.
    Huber, H. L., and K. K. Koessler. The pathology of bronchial asthma. Arch. Int. Med. 30:689–760, 1922.CrossRefGoogle Scholar
  35. 35.
    James, A. L., P. D. Paré, and J. C. Hogg. The mechanics of airway narrowing in asthma. Am. Rev. Respir. Dis. 139:242–246, 1989.CrossRefPubMedGoogle Scholar
  36. 36.
    Javili, A., P. Steinmann, and E. Kuhl. A novel strategy to identify the critical conditions for growth-induced instabilities. J. Mech. Behav. Biomed. Mater. 29:20–32, 2014.CrossRefPubMedGoogle Scholar
  37. 37.
    Jin, L., S. Cai, and Z. Suo. Creases in soft tissues generated by growth. EPL Front. Phys. 95:640021–640026, 2011.Google Scholar
  38. 38.
    Kamm, R. D. Airway wall mechanics. Ann. Rev. Biomed. Eng. 1:47–72, 1999.CrossRefGoogle Scholar
  39. 39.
    Kuhl, E., K. Garikipati, E. M. Arruda, and K. Grosh. Remodeling of biological tissue—mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Phys. Solids 53:1552–1573, 2005.CrossRefGoogle Scholar
  40. 40.
    Kuhl, E., R. Maas, G. Himpel, and A. Menzel. Computational modeling of arterial wall growth: attempts towards patient specific simulations based on computer tomography. Biomech. Mod. Mechanobiol. 6:321–331, 2007.CrossRefGoogle Scholar
  41. 41.
    Kuschner, W.G. The asthma epidemic. N. Engl. J. Med. 356:1073, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Kuwano, K., C. H. Bosken, P. D. Paré, T. R. Bai, B. R. Wiggs, and J. C. Hogg. Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 148:1220–1225, 1993.CrossRefPubMedGoogle Scholar
  43. 43.
    Lambert, R. K. Role of bronchial basement membrane in airway collapse. J. Appl. Phys. 71:666–673, 1991.Google Scholar
  44. 44.
    Li, B., Y. P. Cao, X. Q. Feng, and H. Gao. Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment. J. Mech. Phys. Solids 59:758–774, 2011.CrossRefGoogle Scholar
  45. 45.
    Li, B., Y. P. Cao, and X. Q. Feng. Growth and surface folding of esophageal mucosa. J. Biomech. 44:182–188, 2011.CrossRefPubMedGoogle Scholar
  46. 46.
    Li, B., Y. P. Cao, X. Q. Feng, and H. Gao. Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8:5728–5745, 2012.CrossRefGoogle Scholar
  47. 47.
    Martin, J. G., A. Duguet, and D. H. Eidelman. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease. Eur. Respir. J. 16:349–354, 2000.CrossRefPubMedGoogle Scholar
  48. 48.
    Mason, R. J., V. C. Broaddus, T. Martin, M. B. Gotway, T. E. King, D. Schraufnagel, J. F. Murray, and J. A. Nadel. Murray and Nadel’s Textbook of Respiratory Medicine. Philadelphia: Saunders, 2010.Google Scholar
  49. 49.
    Mauad, T., and A. Xavier. Elastosis and fragmentation of fibers of the elastic system in fatal asthma. Am. J. Respir. Crit Care Med. 160:968–975, 1999.CrossRefPubMedGoogle Scholar
  50. 50.
    McKay, K. O., B. R. Wiggs, P. D. Paré, and R. D. Kamm. Zero-stress state of intra- and extraparenchymal airways from human, pig, rabbit, and sheep lung. J. Appl. Physiol. 92:1261–1266, 2002.CrossRefPubMedGoogle Scholar
  51. 51.
    Menzel, A., and E. Kuhl. Frontiers in growth and remodeling. Mech. Res. Commun. 42:1–14, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moulton, D. E., and A. Goriely. Circumferential buckling instability of a growing cylindrical tube. J. Mech. Phys. Solids 59:525–537, 2011.CrossRefGoogle Scholar
  53. 53.
    Moulton, D. E., and A. Goriely. Possible role of differential growth in airway wall remodeling in asthma. J. Appl. Physiol. 110:1003–1012, 2011.CrossRefPubMedGoogle Scholar
  54. 54.
    Mylavarapu, G., S. Murugappan, M. Mihaescu, M. Kalra, S. Khosla, and E. Gutmark. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. J. Biomech. 2009, 42, 1553–1559.CrossRefPubMedGoogle Scholar
  55. 55.
    National Institutes of Health. Survey: Awareness of COPD the Nation’s Fourth Leading Cause of Death is Rising, but Understanding is Still Low: News Release. U.S National Library of Medicine, 2009. http://www.nih.gov/news/health/nov2009/nhlbi-02.htm.
  56. 56.
    Niewoehner, D. E., Y. Lokhnygina, K. Rice, W. G. Kuschner, A. Sharafhaneh, G. A. Sarosi, P. Krumpe, K. Pieper, and S. Kesten. Risk indices for exacerbations and hospitalizations due to COPD. Chest 131:20–28, 2007.CrossRefPubMedGoogle Scholar
  57. 57.
    Noble, P. B., R. A. McLaughlin, A. R. West, S. Becker, J. J. Armstrong, P. K. McFawn, P. R. Eastwood, D. R. Hillman, D. D. Sampson, and H. W. Mitchell. Distribution of airway narrowing responses across generations and branching points, assessed in vitro by anatomical optical coherence tomography. Respir. Res. 11:91−912, 2010.CrossRefGoogle Scholar
  58. 58.
    Noble, P. B., A. R. West, R. A. McLaughlin, J. J. Armstrong, S. Becker, P. K. McFawn, J. P. Williamson, P. R. Eastwood, D. R. Hillman, D. D. Sampson, and H. W. Mitchell: Airway narrowing assessed by anatomical optical coherence tomography in vivo: dynamics airway wall morphology and function. J. Appl. Physiol. 108:401–411, 2010.CrossRefPubMedGoogle Scholar
  59. 59.
    Nowak, N., P. P. Kakade, and A. V. Annapragada. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390, 2003.CrossRefPubMedGoogle Scholar
  60. 60.
    Papastavrou, A., P. Steinmann, and E. Kuhl. On the mechanics of continua with boundary energies and growing surfaces. J. Mech. Phys. Solids 61:1446–1463, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Roberts, C. R. Is asthma a fibrotic disease? Chest 107:111S–117S, 1995.CrossRefPubMedGoogle Scholar
  62. 62.
    Rodriguez, E. K., A. Hoger, and A. D. McCulloch. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–467, 1994.CrossRefPubMedGoogle Scholar
  63. 63.
    Sáez, P., E. Peña, M. A. Martínez, and E. Kuhl. Computational modeling of hypertensive growth in the human carotid artery. Comput. Mech. 53:1183–1196, 2014.CrossRefPubMedGoogle Scholar
  64. 64.
    Sáez, P., E. Peña, and M. A. Martínez. A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries. Ann. Biomed. Eng. 42:1158–1169, 2014.CrossRefPubMedGoogle Scholar
  65. 65.
    Schmid, H., L. Pauli, A. Paulus, E. Kuhl, and M. Itskov. Consistent formulation of the growth process at the kinematic and constitutive level for soft tissues composed of multiple constituents. Comput. Methods Biomech. Biomed. Eng. 15:547–561, 2012.CrossRefGoogle Scholar
  66. 66.
    Seow, C. Y., L. Wang, and P. D. Paré. Airway narrowing and internal structural constraints. J. Appl. Physiol. 88:527–533, 2000.PubMedGoogle Scholar
  67. 67.
    Stewart, J. I., and G. J. Criner. The small airways in chronic obstructive pulmonary disease: pathology and effects on disease progression and survival. Curr. Opin. Pulm. Med. 19:109–115, 2013.CrossRefPubMedGoogle Scholar
  68. 68.
    Tgavalekos, N. T., J. G. Venegas, B. Suki, and K. R. Lutchen. Relation between structure, function, and imaging in a three-dimensional model of the lung. Ann. Biomed. Eng. 31:363–373, 2003.CrossRefPubMedGoogle Scholar
  69. 69.
    Timoshenko, S. P., and Gere, J. M. Buckling of shells. In: Theory of Elastic Stability, 2nd ed., Chap. 11. Toronto: McGraw-Hill, pp. 457–520, 1961.Google Scholar
  70. 70.
    Wiggs, B. R., C. A. Hrousis, J. M. Drazen, and R. D. Kamm. On the mechanism of mucosal folding in normal and asthmatic airways. J. Appl. Physiol. 83:1814–1821, 1997.PubMedGoogle Scholar
  71. 71.
    Wiggs, B. R., R. Moreno, J. C. Hogg, C. Hilliam, and P. D. Paré. A model of the mechanics of airway narrowing. J. Appl. Physiol. 69:849–860, 1990.PubMedGoogle Scholar
  72. 72.
    Wilson, L., E. B. Devine, and K. So. Direct medical costs of chronic obstructive pulmonary disease: chronic bronchitis and emphysema. Respir. Med. 83:204–213, 2000.CrossRefGoogle Scholar
  73. 73.
    Xie, W. H., B. Li, Y. P. Cao, and X. Q. Feng. Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae. J. Mech. Behav. Biomed. Mater. 29:594–601, 2014.CrossRefPubMedGoogle Scholar
  74. 74.
    Zöllner, A. M., J. M. Pok, E. J. McWalter, G. E. Gold, and E. Kuhl. On high heels and short muscles: a multiscale model for sarcomere loss in the gastrocnemius muscle. J. Theor. Biol. 365:301–310, 2015.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Medical Service, Veterans Affairs Palo Alto Health Care System, Division of Pulmonary and Critical Care MedicineStanford UniversityStanfordUSA
  3. 3.Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic SurgeryStanford UniversityStanfordUSA

Personalised recommendations