Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 6, pp 1422–1431 | Cite as

Estimation of Inlet Flow Rates for Image-Based Aneurysm CFD Models: Where and How to Begin?

  • Kristian Valen-Sendstad
  • Marina Piccinelli
  • Resmi KrishnankuttyRema
  • David. A. SteinmanEmail author
Article

Abstract

Patient-specific flow rates are rarely available for image-based computational fluid dynamics models. Instead, flow rates are often assumed to scale according to the diameters of the arteries of interest. Our goal was to determine how choice of inlet location and scaling law affect such model-based estimation of inflow rates. We focused on 37 internal carotid artery (ICA) aneurysm cases from the Aneurisk cohort. An average ICA flow rate of 245 mL min−1 was assumed from the literature, and then rescaled for each case according to its inlet diameter squared (assuming a fixed velocity) or cubed (assuming a fixed wall shear stress). Scaling was based on diameters measured at various consistent anatomical locations along the models. Choice of location introduced a modest 17% average uncertainty in model-based flow rate, but within individual cases estimated flow rates could vary by >100 mL min−1. A square law was found to be more consistent with physiological flow rates than a cube law. Although impact of parent artery truncation on downstream flow patterns is well studied, our study highlights a more insidious and potentially equal impact of truncation site and scaling law on the uncertainty of assumed inlet flow rates and thus, potentially, downstream flow patterns.

Keywords

Volumetric flow rate Intracranial aneurysm Aneurysm rupture Neuroradiology Scaling law Cube law Inlet truncation 

Notes

Acknowledgments

This study was supported by grant from the Heart & Stroke Foundation of Canada. DAS also acknowledges salary support of a Heart & Stroke Foundation Mid-Career Investigator award.

References

  1. 1.
    Baharoglu, M. I., A. Lauric, C. Wu, J. Hippelheuser, and A. M. Malek. Deviation from optimal vascular caliber control at middle cerebral artery bifurcations harboring aneurysms. J. Biomech. 47:3318–3324, 2014.PubMedCrossRefGoogle Scholar
  2. 2.
    Bouthillier, A., H. R. van Loveren, and J. T. Keller. Segments of the internal carotid artery: a new classification. Neurosurgery 38:425–432, 1996; (discussion 432–433, 1996).PubMedGoogle Scholar
  3. 3.
    Bowker, T. J., P. N. Watton, P. E. Summers, J. V. Byrne, and Y. Ventikos. Rest versus exercise hemodynamics for middle cerebral artery aneurysms: a computational study. AJNR Am. J. Neuroradiol. 31:317–323, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Castro, M. A., C. M. Putman, and J. R. Cebral. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am. J. Neuroradiol. 27:1703–1709, 2006.PubMedGoogle Scholar
  5. 5.
    Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24:457–467, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Cebral, J. R., M. A. Castro, C. M. Putman, and N. Alperin. Flow-area relationship in internal carotid and vertebral arteries. Physiol. Meas. 29:585–594, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 32:264–270, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Cheng, C., F. Helderman, D. Tempel, D. Segers, B. Hierck, R. Poelmann, A. van Tol, D. J. Duncker, D. Robbers-Visser, N. T. C. Ursem, R. van Haperen, J. J. Wentzel, F. Gijsen, A. F. W. van der Steen, R. de Crom, and R. Krams. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis. 195:225–235, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Fahrig, R., H. Nikolov, A. J. Fox, and D. W. Holdsworth. A three-dimensional cerebrovascular flow phantom. Med. Phys. 26:1589–1599, 1999.PubMedCrossRefGoogle Scholar
  10. 10.
    Hodis, S., S. Kargar, D. F. Kallmes, and D. Dragomir-Daescu. Artery length sensitivity in patient-specific cerebral aneurysm simulations. AJNR Am. J. Neuroradiol. 2014. doi: 10.3174/ajnr.A4179.
  11. 11.
    Hoi, Y., B. A. Wasserman, E. G. Lakatta, and D. A. Steinman. Carotid bifurcation hemodynamics in older adults: effect of measured versus assumed flow waveform. J. Biomech. Eng. 132:071006, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hoi, Y., B. A. Wasserman, E. G. Lakatta, and D. A. Steinman. Effect of common carotid artery inlet length on normal carotid bifurcation hemodynamics. J. Biomech. Eng. 132:121008, 2010.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoi, Y., B. A. Wasserman, Y. J. Xie, S. S. Najjar, L. Ferruci, E. G. Lakatta, G. Gerstenblith, and D. A. Steinman. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol. Meas. 31:291–302, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ingebrigtsen, T., M. K. Morgan, K. Faulder, L. Ingebrigtsen, T. Sparr, and H. Schirmer. Bifurcation geometry and the presence of cerebral artery aneurysms. J. Neurosurg. 101:108–113, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    Jansen, I. G., J. J. Schneiders, W. V. Potters, P. van Ooij, R. van den Berg, E. van Bavel, H. A. Marquering, and C. B. Majoie. Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. AJNR Am. J. Neuroradiol. 35:1543–1548, 2014.PubMedCrossRefGoogle Scholar
  16. 16.
    Jou, L. D., D. H. Lee, H. Morsi, and M. E. Mawad. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am. J. Neuroradiol. 29:1761–1767, 2008.PubMedCrossRefGoogle Scholar
  17. 17.
    Karmonik, C., C. Yen, O. Diaz, R. Klucznik, R. G. Grossman, and G. Benndorf. Temporal variations of wall shear stress parameters in intracranial aneurysms–importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochir. 152:1391–1398, 2010; (discussion 1398, 2010).PubMedCrossRefGoogle Scholar
  18. 18.
    Langille, B. L., and F. O’Donnell. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee, S. W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39:2341–2347, 2008.PubMedCrossRefGoogle Scholar
  20. 20.
    Marzo, A., P. Singh, I. Larrabide, A. Radaelli, S. Coley, M. Gwilliam, I. D. Wilkinson, P. Lawford, P. Reymond, U. Patel, A. Frangi, and D. R. Hose. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann. Biomed. Eng. 39:884–896, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Marzo, A., P. Singh, P. Reymond, N. Stergiopulos, U. Patel, and R. Hose. Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms. Comput. Methods Biomech. Biomed. Eng. 12:431–444, 2009.CrossRefGoogle Scholar
  22. 22.
    Meckel, S., L. Leitner, L. H. Bonati, F. Santini, T. Schubert, A. F. Stalder, P. Lyrer, M. Markl, and S. G. Wetzel. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology 55:389–398, 2013.PubMedCrossRefGoogle Scholar
  23. 23.
    Mocco, J., J. Huston, K. M. Fargen, J. Torner, and R. D. Brown, Jr. An angiographic atlas of intracranial arterial diameters associated with cerebral aneurysms. J. Neurointerv. Surg. 6:533–535, 2014.PubMedCrossRefGoogle Scholar
  24. 24.
    Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12:207–214, 1926.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Mynard, J. P., and D. A. Steinman. Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity. Ultrasound Med. Biol. 39:870–881, 2013.PubMedCrossRefGoogle Scholar
  27. 27.
    Pereira, V. M., O. Brina, and A. Marcos. Gonzales, A. P. Narata, P. Bijlenga, K. Schaller, K. O. Lovblad, and R. Ouared. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment. J. Biomech. 46:1531–1539, 2013.PubMedCrossRefGoogle Scholar
  28. 28.
    Piccinelli, M., S. Bacigaluppi, E. Boccardi, B. Ene-Iordache, A. Remuzzi, A. Veneziani, and L. Antiga. Geometry of the internal carotid artery and recurrent patterns in location, orientation, and rupture status of lateral aneurysms: an image-based computational study. Neurosurgery. 68:1270–1285, 2011; (discussion 1285, 2011).PubMedGoogle Scholar
  29. 29.
    Piccinelli, M., D. A. Steinman, Y. Hoi, F. Tong, A. Veneziani, and L. Antiga. Automatic neck plane detection and 3D geometric characterization of aneurysmal sacs. Ann. Biomed. Eng. 40:2188–2211, 2012.PubMedCrossRefGoogle Scholar
  30. 30.
    Qian, Y., H. Takao, M. Umezu, and Y. Murayama. Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. AJNR Am. J. Neuroradiol. 32:1948–1955, 2011.PubMedCrossRefGoogle Scholar
  31. 31.
    Sangalli, L. M., P. Secchi, S. Vantini, and A. Veneziani. A case study in exploratory functional data analysis: geometrical features of the internal carotid artery. J. Am. Stat. Assoc. 104:37–48, 2009.CrossRefGoogle Scholar
  32. 32.
    Stroev, P. V., P. R. Hoskins, and W. J. Easson. Distribution of wall shear rate throughout the arterial tree: a case study. Atherosclerosis. 191:276–280, 2007.PubMedCrossRefGoogle Scholar
  33. 33.
    Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38:1188–1203, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Tremmel, M., S. Dhar, E. I. Levy, J. Mocco, and H. Meng. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study. Neurosurgery. 64:622–630, 2009; (discussion 630-631, 2009).PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Valen-Sendstad, K., M. Piccinelli, and D. A. Steinman. High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture? J. Biomech. 47:3210–3216, 2014.PubMedCrossRefGoogle Scholar
  36. 36.
    Valen-Sendstad, K., and D. A. Steinman. Mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. AJNR Am. J. Neuroradiol. 35:536–543, 2014.PubMedCrossRefGoogle Scholar
  37. 37.
    Wake, A. K., J. N. Oshinski, A. R. Tannenbaum, and D. P. Giddens. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131:021013, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Weinberg, P., and C. R. Ethier. Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. J. Biomech. 40:1594–1598, 2007.PubMedCrossRefGoogle Scholar
  39. 39.
    Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Xiang, J., A. H. Siddiqui, and H. Meng. The effect of inlet wavefoms on computational hemodynamics of patient-specific intracranial aneurysms. J. Biomech. 47:3882–3890, 2014.PubMedCrossRefGoogle Scholar
  41. 41.
    Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25:1303–1310, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Kristian Valen-Sendstad
    • 1
    • 2
  • Marina Piccinelli
    • 3
  • Resmi KrishnankuttyRema
    • 1
    • 4
  • David. A. Steinman
    • 1
    • 4
    Email author
  1. 1.Biomedical Simulation Laboratory, Department of Mechanical & Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Center for Biomedical ComputingSimula Research LaboratoryLysakerNorway
  3. 3.Department of Radiology & Imaging SciencesEmory UniversityAtlantaUSA
  4. 4.Institute of Biomaterials & Biomedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations