Annals of Biomedical Engineering

, Volume 43, Issue 7, pp 1543–1554 | Cite as

Coupled Simulation of Hemodynamics and Vascular Growth and Remodeling in a Subject-Specific Geometry

  • Jiacheng Wu
  • Shawn C. Shadden


A computational framework to couple vascular growth and remodeling (G&R) with blood flow simulation in a 3D patient-specific geometry is presented. Hyperelastic and anisotropic properties are considered for the vessel wall material and a constrained mixture model is used to represent multiple constituents in the vessel wall, which was modeled as a membrane. The coupled simulation is divided into two time scales—a longer time scale for G&R and a shorter time scale for fluid dynamics simulation. G&R is simulated to evolve the boundary of the fluid domain, and fluid simulation is in turn used to generate wall shear stress and transmural pressure data that regulates G&R. To minimize required computation cost, the fluid dynamics are only simulated when G&R causes significant vascular geometric change. For demonstration, this coupled model was used to study the influence of stress-mediated growth parameters, and blood flow mechanics, on the behavior of the vascular tissue growth in a model of the infrarenal aorta derived from medical image data.


Aneurysm Blood flow Constrained mixture Coupled simulation Growth and remodeling 



We would like to thank Dr. Seungik Baek for helpful discussions during the development of this work. This work was supported in part by National Heart, Lung, and Blood Institute Grant 5R21-HL-108272.

Conflict of interest

The authors do not have conflicts of interest relevant to this manuscript.


  1. 1.
    Aparício, P., A. Mandaltsi, J. Boamah, H. Chen, A. Selimovic, M. Bratby, R. Uberoi, Y. Ventikos, and P. N. Watton. Modelling the influence of endothelial heterogeneity on the progression of arterial disease: application to abdominal aortic aneurysm evolution. Int. J. Numer. Methods Biomed. Eng. 30(5):563–586, 2014.CrossRefGoogle Scholar
  2. 2.
    Baek, S., K. R. Rajagopal, and J. D. Humphrey. Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm. J. Elast. 80(1–3):13–31, 2005.CrossRefGoogle Scholar
  3. 3.
    Baek, S., K. R. Rajagopal, and J. D. Humphrey. A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128(1):142–149, 2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Burton, A. C. Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34(6), 1954.Google Scholar
  5. 5.
    Esmaily Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0d/3d coupling in cardiovascular finite element simulations. J. Comput. Phys. 244:63–79, 2013.Google Scholar
  6. 6.
    Figueroa, A. C., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198(45):3583–3602, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Finlay, H. M., Whittaker, P., and Canham, P.B. Collagen organization in the branching region of human brain arteries. Stroke 29(8):1595–1601, 1998.Google Scholar
  8. 8.
    Hariton, I., T. Christian Gasser, G. A. Holzapfel, et al. Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J. Theor. Biol. 248(3):460–470, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech.-A/Solids 21(3):441–463, 2002.CrossRefGoogle Scholar
  10. 10.
    Humphrey, J. D., and G. A. Holzapfel. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45(5):805–814, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03):407–430, 2002.CrossRefGoogle Scholar
  12. 12.
    Malek, A., and S. Izumo. Physiological fluid shear stress causes downregulation of endothelin-1 mrna in bovine aortic endothelium. Am. J. Physiol. Cell Physiol. 263(2):C389–C396, 1992.Google Scholar
  13. 13.
    Niedermüller, H. M. Skalicky, G. Hofecker, and A. Kment. Investigations on the kinetics of collagen-metabolism in young and old rats. Exp. Gerontol. 12(5):159–168, 1977.PubMedCrossRefGoogle Scholar
  14. 14.
    Rizvi, M. A. D., L. Katwa, D. P. Spadone, and P. R. Myers. The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells. J. Mol. Cell. Cardiol. 28(2):243–252, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Rizvi, M. A. D., and P. R. Myers. Nitric oxide modulates basal and endothelin-induced coronary artery vascular smooth muscle cell proliferation and collagen levels. J. Mol. Cell. Cardiol. 29(7):1779–1789, 1997.PubMedCrossRefGoogle Scholar
  16. 16.
    Salsac, A.-V., S. R. Sparks, J.-M. Chomaz, and J. C. Lasheras. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J. Fluid Mech. 560:19–51, 2006.CrossRefGoogle Scholar
  17. 17.
    Selimovic, A., Y. Ventikos, and P. N. Watton. Modelling the evolution of cerebral aneurysms: biomechanics, mechanobiology and multiscale modelling. Procedia IUTAM 10:396–409, 2014.CrossRefGoogle Scholar
  18. 18.
    Sheidaei, A., S. C. Hunley, S. Zeinali-Davarani, L. G. Raguin, and S. Baek. Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med. Eng. Phys. 33(1):80–88, 2011.CrossRefGoogle Scholar
  19. 19.
    Taber, L. A. A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 120(3):348–354, 1998.PubMedCrossRefGoogle Scholar
  20. 20.
    Uematsu, M., Y. Ohara, J. P. Navas, K. Nishida, T. J. Murphy, R. W. Alexander, R. M. Nerem, and D. G. Harrison. Regulation of endothelial cell nitric oxide synthase mrna expression by shear stress. Am. J. Physiol. Cell Physiol. 38(6):C1371, 1995.Google Scholar
  21. 21.
    Valentín, A., L. Cardamone, S. Baek, and J. D. Humphrey. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6(32):293–306, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Valentín, A., and G. A. Holzapfel. Constrained mixture models as tools for testing competing hypotheses in arterial biomechanics: a brief survey. Mech. Res. Commun. 42:126–133, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Valentín, A., and J. D. Humphrey. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos. Trans. R. Soc. A 367(1902):3585–3606, 2009.CrossRefGoogle Scholar
  24. 24.
    Valentín, A., J. D. Humphrey, and G. A. Holzapfel. A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int. J. Numer. Methods Biomed. Eng. 29(8):822–849, 2013.CrossRefGoogle Scholar
  25. 25.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 126(6):815–822, 2004.CrossRefGoogle Scholar
  26. 26.
    Watton, P. N., N. A. Hill, and M Heil. A mathematical model for the growth of the abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 3(2):98–113, 2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Watton, P. N., N. B. Raberger, G. A. Holzapfel, and Y. Ventikos. Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples. J. Biomech. Eng. 131(10):101003, 2009.PubMedCrossRefGoogle Scholar
  28. 28.
    Wilson, J. S., S. Baek, and J. D. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 9(74):2047–2058, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Wilson, J. S., S. Baek, and J. D. Humphrey. Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proc. R. Soc. A 469(2150):20120556, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Wilson, N. M., A. K. Ortiz, and A. B. Johnson. The vascular model repository: a public resource of medical imaging data and blood flow simulation results. J. Med. Devices 7(4):040923, 2013.CrossRefGoogle Scholar
  31. 31.
    Zeinali-Davarani, S., and S. Baek. Medical image-based simulation of abdominal aortic aneurysm growth. Mech. Res. Commun. 42:107–117, 2012.CrossRefGoogle Scholar
  32. 32.
    Zeinali-Davarani, S., A. Sheidaei, and S. Baek. A finite element model of stress-mediated vascular adaptation: application to abdominal aortic aneurysms. Comput. Methods Biomech. Biomed. Eng. 14(9):803–817, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations