Annals of Biomedical Engineering

, Volume 43, Issue 9, pp 2101–2111 | Cite as

Pediatric Coronal Suture Fiber Alignment and the Effect of Interdigitation on Coronal Suture Mechanical Properties

  • Kelly Nicole Adamski
  • Andre Matthew Loyd
  • Albert Samost
  • Barry Myers
  • Roger Nightingale
  • Kathleen Smith
  • Cameron R. ‘Dale’ Bass


The morphological and mechanical properties of the pediatric skull are important in understanding pediatric head injury biomechanics. Although previous studies have analyzed the morphology of cranial sutures, none has done so in pediatric specimens nor have previous studies related the morphology to mechanical properties of human sutures. This study quantified the geometry of pediatric cranial sutures and investigated its correlation with the suture mechanical properties. First, the suture fiber alignment was quantified using histological analysis for four ages—neonate, 9 months-old, 11 months-old, and 18 months-old. For the morphometric investigation of the suture interdigitation, suture samples from a 6-year-old were scanned using micro-CT and the level of interdigitation was measured using two techniques. The first technique, the sinuosity index, was calculated by dividing the suture path along the surface of the skull by the suture distance from beginning to end. The second technique, the surface area interdigitation index, was calculated by measuring the surface area of the bone interface outlining the suture and dividing it by the cross-sectional area of the bone. The mechanical properties were obtained using methods reported in Davis et al.6. The results of the histological analysis showed a significant increase in fiber alignment in older specimen; where random fiber alignment has an average angle deviation of 45°, neonatal suture fibers have an average deviation of 32.2° and the 18-month-old fibers had an average deviation of 16.2° (p < 0.0001). For the suture index measurements, only the sinuosity was positively correlated with the ultimate strain (R 2 = 0.62, Bonferroni corrected p = 0.011) but no other measurements showed a significant relationship, including the amount of interdigitation and elastic modulus. Our results demonstrate that there is a distinct developmental progression of the suture fiber alignment at a young age, but the differences in suture interdigitation can only predict the ultimate strain and no other mechanical properties.


Sutures Interdigitation Fibers Pediatric Skull Morphology Fracture Mechanical properties 


  1. 1.
    Beresford, W. A. Cranial skeletal tissues: diversity and evolutionary trends. In: The Skull, edited by J. Hanken and B. K. Hall, 2:69–130. Patterns of Structural and Systematic Diversity: University of Chicago Press, 1993, pp. 69–130.Google Scholar
  2. 2.
    Bland, J. M., and D. G. Altman. Multiple significance tests: the Bonferroni method. BMJ 310:170, 1995.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bradley, J. P., J. P. Levine, C. Blewett, T. Krummel, J. G. McCarthy, and M. T. Longaker. Studies in cranial suture biology. In vitro cranial suture fusion. Cleft Palate-Craniofacial J. 33:150–156, 1996.CrossRefGoogle Scholar
  4. 4.
    Coats, B., and S. S. Margulies. Material properties of human infant skull and suture at high rates. J. Neurotrauma 23:1222–1232, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen, M. M. Sutural biology. In Craniosynostosis: Diagnosis, Evalutation, and Management, edited by J. M. Michael Cohen and R. E. MacLean. New York: Oxford University Press, 2000, pp. 11–22.Google Scholar
  6. 6.
    Davis, M. T., A. M. Loyd, Shen H-yH, M. H. Mulroy, R. Nightingale, et al. The mechanical and morphological properties of 6-year-old cranial bone. J. Biomech. 45:2493–2498, 2012.PubMedCrossRefGoogle Scholar
  7. 7.
    Gelse, K., E. Pöschl, and T. Aigner. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55:1531–1546, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Herring, S. W. Sutures—a tool in functional cranial analysis. Cells Tissues Organs 83:222–247, 1972.CrossRefGoogle Scholar
  9. 9.
    Herring, S. W. Sutures and craniosynostosis: a comparative, functional, and evolutionary perspective. In: Craniosynostosis: Diagnosis, Evaluation, and Management, edited by J. M. Michael Cohen and R. E. MacLean. New York: Oxford University Press, 2000, pp. 3–10.Google Scholar
  10. 10.
    Hibbeler, R. C. Mechanics of Materials. Upper Saddle River: Prentice Hall, 2003.Google Scholar
  11. 11.
    Jaslow, C. R. Mechanical properties of cranial sutures. J. Biomech. 23:313–321, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Jaslow, C. R., and A. Biewener. Strain Patterns in the horncores, cranial bones and sutures of goats (Capra hircus) during impact loading. J. Zool. 235:193–210, 1995.CrossRefGoogle Scholar
  13. 13.
    Johansen, V. A., and S. H. Hall. Morphogenesis of the mouse coronal suture. Cells Tissues Organs 114:58–67, 1982.CrossRefGoogle Scholar
  14. 14.
    Lynch, H. A., W. Johannessen, J. P. Wu, A. Jawa, and D. M. Elliott. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. Trans. ASME 125:726–731, 2003.Google Scholar
  15. 15.
    Maikos, J. T., R. A. I. Elias, and D. I. Shreiber. Mechanical properties of dura mater from the rat brain and spinal cord. J. Neurotrauma 25:38–51, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Margulies, S. S., and K. L. Thibault. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J. Biomech. Eng. 122:364–371, 2000.PubMedCrossRefGoogle Scholar
  17. 17.
    Markey, M. J., R. P. Main, and C. R. Marshall. In vivo cranial sutures function and suture morphology in the extant fish Polypterus: implications for inferring skull function in living and fossil fish. J. Exp. Biol. 209:2085–2101, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Markey, M. J., and C. R. Marshall. Linking form and function of the fibrous joints in the skull: a new quantification scheme for cranial sutures using the extant fish Polypterus endlicherii. J. Morphol. 268:89–102, 2007.PubMedCrossRefGoogle Scholar
  19. 19.
    Markey, M. J., and C. R. Marshall. Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology. Proc. Natl Acad. Sci. U.S.A. 104:7134–7138, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Persson, M., B. C. Magnusson, and B. Thilander. Sutural closure in rabbit and man: a morphological and histochemical study. J. Anat. 125:313–321, 1978.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Pritchard, J. J. The structure and development of cranial and facial sutures. J. Anat. 90:73–86, 1956.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Rafferty, K. L., and S. W. Herring. Craniofacial sutures: morphology, growth, and in vivo masticatory strains. J. Morphol. 242:167–179, 1999.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Rossert, J., and B. Crombrugghe. Type I collage: structure, synthesis, and regulation. In: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and G. A. Rodan, 2002, pp. 189–210.Google Scholar
  24. 24.
    Slater, B. J., K. A. Lenton, M. D. Kwan, D. M. Gupta, D. C. Wan, and M. T. Longaker. Cranial sutures: a brief review. Plast. Reconstr. Surg. 121:170e–178e, 2008. doi: 10.1097/01.prs.0000304441.99483.97.PubMedCrossRefGoogle Scholar
  25. 25.
    Xu, Y., P. Malladi, M. Chiou, and M. T. Longaker. Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast. Reconstr. Surg. 119:819–829, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Kelly Nicole Adamski
    • 1
    • 2
  • Andre Matthew Loyd
    • 1
  • Albert Samost
    • 1
  • Barry Myers
    • 1
  • Roger Nightingale
    • 1
  • Kathleen Smith
    • 2
  • Cameron R. ‘Dale’ Bass
    • 1
  1. 1.Department of Biomedical Engineering, Injury and Orthopaedic Biomechanics LaboratoryDuke UniversityDurhamUSA
  2. 2.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations