Annals of Biomedical Engineering

, Volume 43, Issue 9, pp 2185–2195 | Cite as

A Smart Haptic Hand-Held Device for Neurosurgical Microdissection

  • Christopher J. Payne
  • Hani J. Marcus
  • Guang-Zhong Yang


Microneurosurgery requires dexterity, precision and delicate force application in order to be carried out safely and effectively. Neurosurgeons must apply sufficient force in order to carry out microsurgical procedures effectively but not excessive force such that iatrogenic injury occurs. This paper presents a smart hand-held microsurgical instrument that indicates to the surgeon when a force-threshold has been exceeded by providing vibrotactile feedback. Many existing haptic-feedback systems, particularly master–slave robotic platforms, are large, highly complex, and costly. By comparison, the proposed device is compact, fail-safe and low cost. Two psychophysical user studies were carried out to assess the proposed vibrotactile force-threshold feedback system. A cadaveric pilot study was carried out to evaluate the device in a microdissection task. In all the studies performed, the haptic dissector device has shown to be effective in providing real-time feedback in terms of force application during microsurgical tasks.


Handheld mechatronics Smart surgical devices Robotic neurosurgery Haptic feedback Force sensing 


  1. 1.
    Ahmed, N., K. S. Devitt, I. Keshet, et al. A systematic review of the effects of resident duty hour restrictions in surgery: impact on resident wellness, training, and patient outcomes. Ann. Surg. 259:1041–1053, 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Balicki, M., A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor. Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery. Med. Image Comput. Comput. Assist. Interv. 13:303–310, 2010.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Becker, B. C., R. A. MacLachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere. Vision-based control of a handheld surgical micromanipulator with virtual fixtures. IEEE Trans. Robot. 29:674–683, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Gonenc, B., M. A. Balicki, J. Handa, P. Gehlbach, C. N. Riviere, R. H. Taylor, and I. Iordachita. Preliminary evaluation of a micro-force sensing handheld robot for vitreoretinal surgery. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4125–4130, 2012.Google Scholar
  5. 5.
    Greenblatt, S. H., T. F. Dagi, and M. H. Epstein. A History of Neurosurgery: In Its Scientific and Professional Contexts. Park Ridge, IL: American Association of Neurological Surgeons, 1997.Google Scholar
  6. 6.
    Gupta, P., P. Jensen, and E. Juan Jr. Surgical forces and tactile perception during retinal microsurgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 1218–1225, 1999.Google Scholar
  7. 7.
    Harada, K., Y. Minakawa, Y. Baek, Y. Kozuka, S. Sora, A. Morita, N. Sugita, and M. Mitsuishi. Microsurgical skill assessment: toward skill-based surgical robotic control. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6700–6703, 2011.Google Scholar
  8. 8.
    Hayward, V., and K. Maclean. Do it yourself haptics: part I. IEEE Robot. Autom. Mag. 14:88–104, 2007.CrossRefGoogle Scholar
  9. 9.
    He, X., M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita. Force sensing micro-forceps with integrated fiber bragg grating for vitreoretinal surgery. In: SPIE BiOS. International Society for Optics and Photonics, 82180W, 2012.Google Scholar
  10. 10.
    Hotraphinyo, L. F. and C. N. Riviere. Three-dimensional accuracy assessment of eye surgeons. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3458–3461, 2001.Google Scholar
  11. 11.
    Hwang, H., J. Lim, C. Kinnaird, A. G. Nagy, O. N. M. Panton, A. J. Hodgson, and K. A. Qayumi. Correlating motor performance with surgical error in laparoscopic cholecystectomy. Surg. Endosc. 20:651–655, 2006.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones, L. A. Perception of force and weight: theory and research. Psychol. Bull. 100:29–42, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Jones, L. A. Perceptual constancy and the perceived magnitude of muscle forces. Exp. Brain Res. 151:197–203, 2003.PubMedCrossRefGoogle Scholar
  14. 14.
    Lang, M. J., and G. R. Sutherland. Informatic surgery: the union of surgeon and machine. World Neurosurg. 74:118–120, 2010.PubMedCrossRefGoogle Scholar
  15. 15.
    Latt, W. T., R. C. Newton, M. Visentini-Scarzanella, C. J. Payne, D. P. Noonan, J. Shang, and G.-Z. Yang. A hand-held instrument to maintain steady tissue contact during probe-based confocal laser endomicroscopy. IEEE Trans. Biomed. Eng. 58:2694–2703, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Latt, W. T., U. X. Tan, C. Y. Shee, and W. T. Ang. A compact hand-held active physiological tremor compensation instrument. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 711–716, 2009.Google Scholar
  17. 17.
    Lederman, S. J., R. D. Howe, R. L. Klatzky, and C. Hamilton. Force variability during surface contact with bare finger or rigid probe. In: 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS ‘04, Proceedings, pp. 154–160, 2004.Google Scholar
  18. 18.
    Lee, R., B. Wu, R. Klatzky et al. Hand-held force magnifier for surgical instruments: evolution toward a clinical device. In: Augmented Environments for Computer-Assisted Interventions, pp. 77–89, 2013.Google Scholar
  19. 19.
    Marcus, H., V. Vakharia, M. A. Kirkman, M. Murphy, and D. Nandi. Practice makes perfect? The role of simulation-based deliberate practice and script-based mental rehearsal in the acquisition and maintenance of operative neurosurgical skills. Neurosurgery 72(Suppl 1):124–130, 2013.PubMedCrossRefGoogle Scholar
  20. 20.
    Marcus, H. J., A. Hughes-Hallett, T. P. Cundy, D. Nandi, G.-Z. Yang, and A. Darzi. Not everything that counts can be easily counted. BMJ 346:f2461, 2013.PubMedCrossRefGoogle Scholar
  21. 21.
    Marcus, H. J., C. A. Seneci, C. J. Payne, D. Nandi, A. Darzi, and G.-Z. Yang. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms. Neurosurgery 10:84–96, 2013.CrossRefGoogle Scholar
  22. 22.
    Marcus, H. J., K. Zareinia, L. S. Gan, F. W. Yang, S. Lama, G.-Z. Yang, and G. R. Sutherland. Forces exerted during microneurosurgery: a cadaver study. Int. J. Med. Robot. Comput. Assist. Surg. 10:251–256, 2014.CrossRefGoogle Scholar
  23. 23.
    Park, W.-H., and C. T. Leonard. The effect of intervening forces on finger force perception. Neurosci. Lett. 438:286–289, 2008.PubMedCrossRefGoogle Scholar
  24. 24.
    Payne, C. J., K.-W. Kwok, and G.-Z. Yang. An ungrounded hand-held surgical device incorporating active constraints with force-feedback. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2559–2565, 2013.Google Scholar
  25. 25.
    Payne, C. J., W. T. Latt, and G.-Z. Yang. A new hand-held force-amplifying device for micromanipulation. In: IEEE International Conference on Robotics and Automation, pp. 1583–1588, 2012.Google Scholar
  26. 26.
    Payne, C. J., H. Rafii-Tari, H. J. Marcus, and G.-Z. Yang. Hand-held microsurgical forceps with force-feedback for micromanipulation. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 284–289, 2014.Google Scholar
  27. 27.
    Payne, C. J., and G.-Z. Yang. Hand-held medical robots. Ann. Biomed. Eng. 42:1594–1605, 2014.PubMedCrossRefGoogle Scholar
  28. 28.
    Safwat, B., E. L. M. Su, R. Gassert, C. L. Teo, and E. Burdet. The role of posture, magnification, and grip force on microscopic accuracy. Ann. Biomed. Eng. 37:997–1006, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Salcudean, S. E. and J. Yan. Towards a force-reflecting motion-scale system for microsurgery. In: IEEE International Conference on Robotics and Automation, pp. 2296–2301, 1994.Google Scholar
  30. 30.
    Salcudean, S. E., S. Ku, and G. Bell. Performance measurement in scaled teleoperation for microsurgery. In: First Joint Conference Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery, pp. 789–798, 1997.Google Scholar
  31. 31.
    Song, C., D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang. Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery. Biomed. Optics. Exp. 4:1045–1050, 2013.CrossRefGoogle Scholar
  32. 32.
    Stetten, G., B. Wu, R. Klatzky et al. Hand-held force magnifier for surgical instruments. In: Augmented Environments for Computer-Assisted Interventions, pp. 90–100, 2011.Google Scholar
  33. 33.
    Sutherland, G. R., P. B. McBeth, and D. F. Louw. Neuroarm: an MR compatible robot for microsurgery. In: Computer Assisted Radiology and Surgery, pp. 504–508, 2003.Google Scholar
  34. 34.
    Taylor, R., P. Jensen, L. Whitcomb et al. A steady-hand robotic system for microsurgical augmentation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 1031–1041, 1999.Google Scholar
  35. 35.
    Thorne, L., S. Burn, S. Shaw, B. Arvin, and R. Bradford. Neurosurgical trainees operative experience before and after introduction of the New Deal for junior doctors. Br. J. Neurosurg. 20:31–35, 2006.PubMedCrossRefGoogle Scholar
  36. 36.
    Wagner, C. R., D. P. Perrin, R. D. Howe, N. Vasilyev, and P. J. Del Nido. Force feedback in a three-dimensional ultrasound-guided surgical task. In: IEEE Virtual Reality Conference (VR’06), pp. 76–76, 2006.Google Scholar
  37. 37.
    Yang, S., R. A. MacLachlan, and C. N. Riviere. Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument. IEEE/ASME Trans. Mechatron. 1–12, 2014.Google Scholar
  38. 38.
    Yao, H.-Y., V. Hayward, and R. E. Ellis. A tactile enhancement instrument for minimally invasive surgery. Comp. Aided. Surg. 10:233–239, 2005.CrossRefGoogle Scholar
  39. 39.
    Yaşargil, M. G. Microneurosurgery. Georg Thieme, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Christopher J. Payne
    • 1
  • Hani J. Marcus
    • 1
  • Guang-Zhong Yang
    • 1
  1. 1.The Hamlyn Centre for Robotic SurgeryImperial College LondonLondonUK

Personalised recommendations