Annals of Biomedical Engineering

, Volume 43, Issue 7, pp 1502–1515 | Cite as

Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms

  • Anne M. RobertsonEmail author
  • Xinjie Duan
  • Khaled M. Aziz
  • Michael R. Hill
  • Simon C. Watkins
  • Juan R. Cebral


Intracranial aneurysms are pathological enlargements of brain arteries that are believed to arise from progressive wall degeneration and remodeling. Earlier work using classical histological approaches identified variability in cerebral aneurysm mural content, ranging from layered walls with intact endothelium and aligned smooth muscle cells, to thin, hypocellular walls. Here, we take advantage of recent advances in multiphoton microscopy, to provide novel results for collagen fiber architecture in 15 human aneurysm domes without staining or fixation as well as in 12 control cerebral arteries. For all aneurysm samples, the elastic lamina was absent and the abluminal collagen fibers had similar diameters to control arteries. In contrast, the collagen fibers on the luminal side showed great variability in both diameter and architecture ranging from dense fiber layers to sparse fiber constructs suggestive of ineffective remodeling efforts. The mechanical integrity of eight aneurysm samples was assessed using uniaxial experiments, revealing two sub-classes (i) vulnerable unruptured aneurysms (low failure stress and failure pressure), and (ii) strong unruptured aneurysms (high failure stress and failure pressure). These results suggest a need to refine the end-point of risk assessment studies that currently do not distinguish risk levels among unruptured aneurysms. We propose that a measure of wall integrity that identifies this vulnerable wall subpopulation will be useful for interpreting future biological and structural data.


Soft tissue Rupture risk Structural integrity Collagen Failure Multiphoton Remodeling 



This work was supported, in part, by a grant from the National Institute of Neurological Disorders and Stroke of the National Institute of Health (1R21NS080031-01A1). We also wish to acknowledge Joshua Selling, a talented undergraduate student at the University of Pittsburgh, for his development and implementation of a meticulous protocol for fiber diameter measurements. The authors wish to thank the Alzheimers Disease Research Center (ADRC) of the University of Pittsburgh and Dr. Julia K. Kofler, Director of the Neuropathology Core of the ADRC for providing the cadaveric human cerebral vessels that were used in this study.

Conflict of interest



  1. 1.
    Austin, G., S. Fisher, D. Dickson, D. Anderson, and S. Richardson. The significance of the extracellular matrix in intracranial aneurysms. Ann. Clin. Lab. Sci. 23(2):97–105, 1993.PubMedGoogle Scholar
  2. 2.
    Broderick, J. P., R. D. Brown, L. Sauerbeck, R. Hornung, J. Huston, D. Woo, C. Anderson, G. Rouleau, D. Kleindorfer, M. L. Flaherty, I. Meissner, T. Foroud, E. C. J. Moomaw, and E. S. Connolly. Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke 40:1952–1957, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Canham, P. B., and G. G. Ferguson. A mathematical model for the mechanics of saccular aneurysms. J. Neurosurg. 17:291–295, 1985.CrossRefGoogle Scholar
  4. 4.
    Cebral, J. R., and H. Meng. Counterpoint: realizing the clinical utility of computational fluid dynamics—closing the gap. AJNR Am. J. Neuroradiol. 33(3):396–398, 2012.PubMedCrossRefGoogle Scholar
  5. 5.
    Cebral, J. R., F. Mut, J. Weir, and C. Putman. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am. J. Neuroradiol. 32(1):145–151, 2011.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Cebral, J. R., and M. Raschi. Suggested connections between risk factors of intracranial aneurysms: a review. Ann. Biomed. Eng. 41:1366–1383, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Costalat, V., M. Sanchez, D. Ambard, L. Thines, N. Lonjon, F. Nicoud, H. Brunel, J. P. Lejeune, H. Dufour, P. Bouillot, J. P. Lhaldky, K. Kouri, F. Segnarbieux, C. A. Maurage, K. Lobotesis, M. C. Villa-Uriol, C. Zhang, A. F. Frangi, G. Mercier, A. Bonafé, L. Sarry, and F. Jourdan. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project). J. Biomech. 44(15):2685–2691, 2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Frösen, J., A. Piippo, A. Paetau, M. Kangasniemi, M. Niemelä, J. Hernesniemi, and J. Jääskeläinen. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35(10):2287–2293, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Frösen, J., R. Tulamo, A. Paetau, E. Laaksamo, M. Korja, A. Laakso, M. Niemelä, and J. Hernesniemi. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 123(6):773–786, 2012.PubMedCrossRefGoogle Scholar
  10. 10.
    Haykowsky, M. J., J. M. Findlay, and A. P. Ignaszewski. Aneurysmal subarachnoid hemorrhage associated with weight training: three case reports. Clin. J. Sport Med. 6(1):52–55, 1996.PubMedCrossRefGoogle Scholar
  11. 11.
    Hill, M., X. Duan, G. Gibson, S. Watkins, and A. Robertson. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45(5):762–771, 2012.PubMedCrossRefGoogle Scholar
  12. 12.
    Humphrey, J. D., and P. B. Canham. Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. J Elasticity 61:49–81, 2000.CrossRefGoogle Scholar
  13. 13.
    Juvela, S., M. Porras, and K. Poussa. Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J. Neurosurg. 108(5):1052–1060, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Kadirvel, R., Y. H. Ding, D. Dai, H. Zakaria, A. Robertson, M. Danielson, D. Lewis, H. Cloft, and D. Kallmes. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology 49(12):1041–1053, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Kallmes, D. F. Point: CFD—computational fluid dynamics or confounding factor dissemination. AJNR Am. J. Neuroradiol. 33(3):395–396, 2012.PubMedCrossRefGoogle Scholar
  16. 16.
    Kelly, P. J., J. Stein, S. Shafqat, C. Eskey, D. Doherty, Y. Chang, A. Kurina, and K. L. Furie. Functional recovery after rehabilitation for cerebellar stroke. Stroke 32(2):530–534, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Krings, T., D. M. Mandell, T. R. Kiehl, S. Geibprasert, M. Tymianski, H. Alvarez, K. G. TerBrugge, and F. J. Hans. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat. Rev. Neurol. 7(10):547–559, 2011.PubMedCrossRefGoogle Scholar
  18. 18.
    Lall, R., C. Eddleman, B. Bendok, and H. Batjer. Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphological factors: sifting through the sands of data. Neurosurg. Focus 26(5):E2, 2009.PubMedCrossRefGoogle Scholar
  19. 19.
    MacDougall, J. D., D. Tuxen, D. G. Sale, J. R. Moroz, and J. R. Sutton. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58:785–790, 1985.PubMedGoogle Scholar
  20. 20.
    Morita, A., S. Fujiwara, K. Hashi, H. Ohtsu, and T. Kirino. Risk of rupture associated with intact cerebral aneurysms in the Japanese population: a systematic review of the literature from Japan. J. Neurosurg. 102(4):601–606, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Morita, A., T. Kimura, M. Shojima, T. Sameshima, and T. Nishihara. Unruptured intracranial aneurysms: current perspectives on the origin and natural course, and quest for standards in the management strategy. Neurol. Med. Chir. 50(9):777–787, 2010.CrossRefGoogle Scholar
  22. 22.
    Rinkel, G., M. Djibuti, A. Agra, and J. V. Gijn. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Robertson, A. M., M. R. Hill, and D. Li. Structurally motivated damage models for arterial walls—theory and application. In: Modelling of Physiological Flows, Modeling, Simulation and Applications, Vol. 5, edited by D. Ambrosi, A. Quarteroni, and G. Rozza. New York: Springer, 2011.Google Scholar
  24. 24.
    Robertson, A. M., and P. N. Watton. Computational fluid dynamics in aneurysm research: critical reflections, future directions. AJNR Am. J. Neuroradiol. 33(6):992–995, 2012.PubMedCrossRefGoogle Scholar
  25. 25.
    Robertson, A. M., and P. N. Watton. Mechanobiology of the arterial wall, chap 8. In: Transport in Biological Media, edited by S. Becker, and A. Kuznetsov. New York: Elsevier, 2013, pp. 275–347.CrossRefGoogle Scholar
  26. 26.
    Ropper, A. H., and N. T. Zervas. Outcome 1 year after SAH from cerebral aneurysm. Management morbidity, mortality, and functional status in 112 consecutive good-risk patients. J. Neurosurg. 60:909–915, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Sanchez, M., D. Ambard, V. Costalat, S. Mendez, F. Jourdan, and F. Nicoud. Biomechanical assessment of the individual risk of rupture of cerebral aneurysms: a proof of concept. Ann. Biomed. Eng. 41:28–40, 2013.PubMedCrossRefGoogle Scholar
  28. 28.
    Schievink, W. I., J. M. Karemaker, L. M. Hageman, and D. J. van der Werf. Circumstances surrounding aneurysmal subarachnoid hemorrhage. Surg. Neurol. 32(4):266–272, 1989.PubMedCrossRefGoogle Scholar
  29. 29.
    Schmid, H., P. N. Watton, M. M. Maurer, J. Wimmer, P. Winkler, Y. K. Wang, O. Röhrle, and M. Itskov. Impact of transmural heterogeneities on arterial adaptation: application to aneurysm formation. Biomech. Model Mechanobiol. 9:295–315, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Scott, S., G. G. Ferguson, and M. R. Roach. Comparison of the elastic properties of human intracranial arteries and aneurysms. Can. J. Physiol. Pharmacol. 50:328–332, 1972. doi: 10.1139/y72-049.PubMedCrossRefGoogle Scholar
  31. 31.
    Stehbens, W. E. Pathology of the Cerebral Blood Vessels. St. Louis: C.V. Mosby Co., 1972.Google Scholar
  32. 32.
    Stehbens, W. E. Etiology of intracranial berry aneurysms. J. Neurosurg. 70:823–831, 1989.PubMedCrossRefGoogle Scholar
  33. 33.
    Steiger, H. J., R. Aaslid, S. Keller, and H. J. Reulen. Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 5:41–46, 1989.PubMedCrossRefGoogle Scholar
  34. 34.
    Stemper, B. D., N. Yoganandan, M. R. Stineman, T. A. Gennarelli, J. L. Baisden, and F. A. Pintar. Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res. 139(2):236–242, 2007.PubMedCrossRefGoogle Scholar
  35. 35.
    The International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms-risk of rupture and risks of surgical intervention. N. Engl. J. Med. 339(24):1725–1733, 1998.CrossRefGoogle Scholar
  36. 36.
    Weir, B., and R. L. Macdonald. Intracranial aneurysms and subarachnoid hemorrhage: an overview. In: Neurosurgery, 2nd ed., edited by R. H. Wilkins, and S. S. Rengachany. New York: McGraw-Hill, 1996, pp. 2191–2213.Google Scholar
  37. 37.
    Wiebers, D. O., J. C. Torner, and I. Meissner. Impact of unruptured intracranial aneurysms on public health in the united states. Stroke 23:1416–1419, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Anne M. Robertson
    • 1
    Email author
  • Xinjie Duan
    • 1
  • Khaled M. Aziz
    • 2
  • Michael R. Hill
    • 3
  • Simon C. Watkins
    • 4
  • Juan R. Cebral
    • 5
  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  2. 2.Department of NeurosurgeryAllegheny General HospitalPittsburghUSA
  3. 3.Institute for Computational Engineering and Sciences (ICES)University of Texas at AustinAustinUSA
  4. 4.Center for Biological Imaging (CBI)University of PittsburghPittsburghUSA
  5. 5.Department of BioengineeringGeorge Mason UniversityFairfaxUSA

Personalised recommendations