Annals of Biomedical Engineering

, Volume 43, Issue 9, pp 2220–2230 | Cite as

Synergistic Impact of Nicotine and Shear Stress Induces Cytoskeleton Collapse and Apoptosis in Endothelial Cells

  • Yu-Hsiang Lee
  • Ruei-Siang Chen
  • Nen-Chung Chang
  • Kueir-Rarn Lee
  • Chien-Tsai Huang
  • Yu-Ching Huang
  • Feng-Ming Ho


Nicotine is the major component in cigarette smoke and has been recognized as a risk factor for various cardiovascular diseases such as atherosclerosis. However, the definite pathogenesis of nicotine-mediated endothelial dysfunction remains unclear because hemodynamic factor in most of prior in vitro studies was excluded. To understand how nicotine affects endothelium in the dynamic environment, human umbilical vein endothelial cells were treated by different laminar shear stresses (LSS; 0, 6, 8, and 12 dynes cm−2) with and without 10−4 M nicotine for 12 h in a parallel plate flow system, following detections of cellular morphology and apoptotic level. Our results showed that cells sheared by 12 dynes cm−2 LSS with nicotine excessively elongated and aligned with the flow direction, and exhibited significant apoptosis as compared to the groups with nicotine or LSS alone. We reasoned that the irregular morphological rearrangement and elevated apoptosis were resulted from the interruption of mechanostasis due to cytoskeletal collapse. Furthermore, all the impaired responses can be rescued by treatment with free radical scavenger ascorbic acid (10−4 M), indicating oxidative stress was likely mediated with the impairments. In summary, our findings demonstrated an essential role of LSS in nicotine-mediated endothelial injury occurring in the physiological environment.


Nicotine Laminar shear stress Morphological reorganization Cytoskeleton disintegration Apoptosis 

Supplementary material

10439_2014_1244_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3899 kb)


  1. 1.
    Aboyans, V., P. Lacroix, and M. H. Criqui. Large and small vessels atherosclerosis: similarities and differences. Prog. Cardiovasc. Dis. 50:112–125, 2007.PubMedCrossRefGoogle Scholar
  2. 2.
    Ando, J., and K. Yamamoto. Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ. J. 73:1983–1992, 2009.PubMedCrossRefGoogle Scholar
  3. 3.
    Bundey, R. A. Endothelial cell mechanosensitivity. Focus on “Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types”. Am. J. Physiol. Cell Physiol. 293:C33–C34, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Cardinale, A., C. Nastrucci, A. Cesario, and P. Russo. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit. Rev. Toxicol. 42:68–89, 2012.PubMedCrossRefGoogle Scholar
  5. 5.
    Chan, D. D., W. S. Van Dyke, M. Bahls, S. D. Connell, P. Critser, J. E. Kelleher, M. A. Kramer, S. M. Pearce, S. Sharma, and C. P. Neu. Mechanostasis in apoptosis and medicine. Prog. Biophys. Mol. Biol. 106:517–524, 2011.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, C. S., J. Tan, and J. Tien. Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng. 6:275–302, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    Cheng, J. J., B. S. Wung, Y. J. Chao, H. J. Hsieh, and D. L. Wang. Cyclic strain induces redox changes in endothelial cells. Chin. J. Physiol. 42:103–111, 1999.PubMedGoogle Scholar
  8. 8.
    D’Amours, D., F. R. Sallmann, V. M. Dixit, and G. G. Poirier. Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage byapoptotic proteases: implications for apoptosis. J. Cell. Sci. 114:3771–3778, 2001.PubMedGoogle Scholar
  9. 9.
    Diehm, N., A. Shang, A. Silvestro, D. D. Do, F. Dick, J. Schmidli, F. Mahler, and I. Baumgartner. Association of cardiovascular risk factors with pattern of lower limb atherosclerosis in 2659 patients undergoing angioplasty. Eur. J. Vasc. Endovasc. Surg. 31:59–63, 2006.PubMedCrossRefGoogle Scholar
  10. 10.
    Dimmeler, S., C. Hermann, J. Galle, and A. M. Zeiher. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler. Thromb. Vasc. Biol. 19:656–664, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Duchene, J., C. Cayla, S. Vessillier, R. Scotland, K. Yamashiro, F. Lecomte, I. Syed, P. Vo, A. Marrelli, C. Pitzalis, F. Cipollone, J. Schanstra, J. L. Bascands, A. J. Hobbs, M. Perretti, and A. Ahluwalia. Laminar shear stress regulates endothelial kinin B1 receptor expression and function: potential implication in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 29:1757–1763, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fitzpatrick, P. A., A. F. Guinan, T. G. Walsh, R. P. Murphy, M. T. Killeen, N. P. Tobin, A. R. Pierotti, and P. M. Cummins. Down-regulation of neprilysin (EC3.4.24.11) expression in vascular endothelial cells by laminar shear stress involves NADPH oxidase-dependent ROS production. Int. J. Biochem. Cell Biol. 41:2287–2294, 2009.PubMedCrossRefGoogle Scholar
  13. 13.
    Haltmayer, M., T. Mueller, W. Horvath, C. Luft, W. Poelz, and D. Haidinger. Impact of atherosclerotic risk factors on the anatomical distribution of peripheral arterial disease. Int. Angiol. 20:200–207, 2001.PubMedGoogle Scholar
  14. 14.
    Hukkanen, J., P. Jacob, and N. L. Benowitz. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 57:79–115, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    Iqbal, K., A. Khan, and M. M. A. K. Khattak. Biological significance of ascorbic acid (vitamin C) in human health—a review. Pak. J. Nutr. 3:5–13, 2004.CrossRefGoogle Scholar
  16. 16.
    Kaufmann, S. H., S. Desnoyers, Y. Ottaviano, N. E. Davidson, and G. G. Poirier. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53:3976–3985, 1993.PubMedGoogle Scholar
  17. 17.
    Lee, J., and J. P. Cooke. The role of nicotine in the pathogenesis of atherosclerosis. Atherosclerosis 215:281–283, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Ling, Y., N. Lu, Y. Gao, Y. Chen, S. Wang, Y. Yang, and Q. Guo. Endostar induces apoptotic effects in HUVECs through activation of caspase-3 and decrease of Bcl-2. Anticancer Res. 29:411–417, 2009.PubMedGoogle Scholar
  20. 20.
    Lum, H., and K. A. Roebuck. Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. Cell. Physiol. 280:C719–C741, 2001.PubMedGoogle Scholar
  21. 21.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA. J. Am. Med. Assoc. 282:2035–2042, 1999.CrossRefGoogle Scholar
  22. 22.
    Matsushita, H., K. H. Lee, and P. S. Tsao. Cyclic strain induces reactive oxygen species production via an endothelial NAD(P)H oxidase. J. Cell Biochem. Suppl. Suppl 36:99–106, 2001.CrossRefGoogle Scholar
  23. 23.
    Ray, S., O. Bucur, and A. Almasan. Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor. Apoptosis 10:1411–1418, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Rennier, K., and J. Y. Ji. Shear stress regulates expression of death-associated protein kinase in suppressing TNFα-induced endothelial apoptosis. J. Cell. Physiol. 227:2398–2411, 2012.PubMedCrossRefGoogle Scholar
  25. 25.
    Sackett, D. L., R. W. Gibson, I. D. Bross, and J. W. Pickren. Relation between aortic atherosclerosis and the use of cigarettes and alcohol. An autopsy study. N. Engl. J. Med. 279:1413–1420, 1968.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith, F. B., A. J. Lee, F. G. Fowkes, A. Rumley, and G. D. Lowe. Smoking, haemostatic factors and the severity of aorto-iliac and femoro-popliteal disease. Thromb. Haemost. 75:19–24, 1996.PubMedGoogle Scholar
  27. 27.
    Stoneman, V. E., and M. R. Bennett. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin. Sci. (Lond) 107:343–354, 2004.CrossRefGoogle Scholar
  28. 28.
    Takabe, W., E. Warabi, and N. Noguchi. Anti-atherogenic effect of laminar shear stress via Nrf2 activation. Antioxid. Redox. Signal. 15:1415–1426, 2011.PubMedCrossRefGoogle Scholar
  29. 29.
    Traub, O., and B. Berk. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. 18:677–685, 1998.CrossRefGoogle Scholar
  30. 30.
    Wang, W., C. H. Ha, B. S. Jhun, C. Wong, M. K. Jain, and Z. G. Jin. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 115:2971–2979, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Wu, C. C., Y. S. Li, J. H. Haga, R. Kaunas, J. J. Chiu, F. C. Su, S. Usami, and S. Chien. Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc. Natl. Acad. Sci. USA 104:1254–1259, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Yang, Y. M., and G. T. Liu. Damaging effect of cigarette smoke extract on primary cultured human umbilical vein endothelial cells and its mechanism. Biomed. Environ. Sci. 17:121–134, 2004.PubMedGoogle Scholar
  33. 33.
    Yegutkin, G., P. Bodin, and G. Burnstock. Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5’-nucleotidase along with endogenous ATP from vascular endothelial cells. Br. J. Pharmacol. 129:921–926, 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Zarins, C. K., M. A. Zatina, D. P. Giddens, D. N. Ku, and S. Glagov. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5:413–420, 1987.PubMedCrossRefGoogle Scholar
  35. 35.
    Zeidler, R., K. Albermann, and S. Lang. Nicotine and apoptosis. Apoptosis 12:1927–1943, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Yu-Hsiang Lee
    • 1
  • Ruei-Siang Chen
    • 1
  • Nen-Chung Chang
    • 2
  • Kueir-Rarn Lee
    • 3
  • Chien-Tsai Huang
    • 4
  • Yu-Ching Huang
    • 5
  • Feng-Ming Ho
    • 2
    • 3
    • 4
  1. 1.Graduate Institute of Biomedical EngineeringNational Central UniversityTaoyuan CountyTaiwan, ROC
  2. 2.Department of Internal Medicine, School of MedicineTaipei Medical UniversityTaipeiTaiwan, ROC
  3. 3.R&D Center for Membrane Technology, Department of Chemical EngineeringChung Yuan Christian UniversityTaoyuan CountyTaiwan, ROC
  4. 4.Department of Internal MedicineTao-Yuan General Hospital, Ministry of Health and WelfareTaoyuan CountyTaiwan, ROC
  5. 5.Department of NeurologyTao-Yuan General Hospital, Ministry of Health and WelfareTaoyuan CountyTaiwan, ROC

Personalised recommendations