Annals of Biomedical Engineering

, Volume 43, Issue 8, pp 1786–1802 | Cite as

Computational Modelling of Multi-folded Balloon Delivery Systems for Coronary Artery Stenting: Insights into Patient-Specific Stent Malapposition

  • Georgios E. Ragkousis
  • Nick Curzen
  • Neil W. Bressloff


Despite the clinical effectiveness of coronary artery stenting, percutaneous coronary intervention or “stenting” is not free of complications. Stent malapposition (SM) is a common feature of “stenting” particularly in challenging anatomy, such as that characterized by long, tortuous and bifurcated segments. SM is an important risk factor for stent thrombosis and recently it has been associated with longitudinal stent deformation. SM is the result of many factors including reference diameter, vessel tapering, the deployment pressure and the eccentric anatomy of the vessel. For the purpose of the present paper, virtual multi-folded balloon models have been developed for simulated deployment in both constant and varying diameter vessels under uniform pressure. The virtual balloons have been compared to available compliance charts to ensure realistic inflation response at nominal pressures. Thereafter, patient-specific simulations of stenting have been conducted aiming to reduce SM. Different scalar indicators, which allow a more global quantitative judgement of the mechanical performance of each delivery system, have been implemented. The results indicate that at constant pressure, the proposed balloon models can increase the minimum stent lumen area and thereby significantly decrease SM.


Coronary stents Balloon delivery systems Patient-specific model Stent malapposition Finite element analysis 



Percutaneous coronary intervention


Stent malapposition


Stent thrombosis


Drug eluting stent


Finite element analysis


Right coronary artery


Left anterior descenting




Left main


Total average curvature


Total average torsion


Volume average stress


Area average stent malapposition


Minimum lumen area


Volume gain



This work was funded by Medtronic Inc. (Minnesota, USA), the Faculty of Engineering and the Environment and the Faculty of Medicine of Southampton University. The authors would like to acknowledge the unrestricted support offered which ultimately allowed the project to be completed.

Supplementary material

10439_2014_1237_MOESM1_ESM.pdf (1001 kb)
Supplementary material 1 (pdf 1064291 kb)


  1. 1.
    AbbotVascular. The Xience Everolimus Eluting Coronary Stent System Instructions for Use, 2008. URL p. 59. Accessed 11 July 2014.
  2. 2.
    Al Suwaidi, J., W. Yeh, H. A. Cohen, K. M. Detre, D. O. Williams, and D. R. Holmes. Immediate and one-year outcome in patients with coronary bifurcation lesions in the modern era (nhlbi dynamic registry). Am. J. Cardiol. 87(10):1139–1144, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Chua, S. D., B. M. Donald, and M. Hashmi. Finite element simulation of stent and balloon interaction. J. Mater. Process. Technol., 143–144(0):591–597, 2003. Proceedings of the International Conference on the Advanced Materials Processing Technology, 2001.Google Scholar
  4. 4.
    Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3(4):374–387, 2012.CrossRefGoogle Scholar
  5. 5.
    De Beule, M. Finite element stent design. PhD Thesis, Ghent University, 2008. URL
  6. 6.
    De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41(2):383–389, 2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Doulaverakis, C., I. Tsampoulatidis, A. P. Antoniadis, Y. S. Chatzizisis, A. Giannopoulos, I. Kompatsiaris, and G. D. Giannoglou. Ivusangio tool: a publicly available software for fast and accurate 3d reconstruction of coronary arteries. Comput. Biol. Med. 43(11):1793–1803, 2013.PubMedCrossRefGoogle Scholar
  8. 8.
    England, W. T., and T. L. Miller. Volumes and cross-sectional areas, Math. Mag. 74(4):288–295, 2001.CrossRefGoogle Scholar
  9. 9.
    Foin, N., R. Torii, P. Mortier, et al. Kissing balloon or sequential dilation of the side branch and main vessel for provisional stenting of bifurcations: Lessons from micro-computed tomography and computational simulations. JACC Cardiovasc. Interv. 5(1):47–56, 2012.PubMedCrossRefGoogle Scholar
  10. 10.
    Fysal, Z., T. Hyde, E. Barnes, W. McCrea, and S. Ramcharitar. Evaluating stent optimisation technique (stentboost) in a dedicated bifurcation stent (the tryton). Cardiovasc. Revasc. Med. 15(2):92–96, 2014.PubMedCrossRefGoogle Scholar
  11. 11.
    Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, and F. Migliavacca. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9(5):551–561, 2010.PubMedCrossRefGoogle Scholar
  12. 12.
    Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. Virgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41(6):1206–1212, 2008.PubMedCrossRefGoogle Scholar
  13. 13.
    Grogan, J., B. O’Brien, S. Leen, and P. McHugh. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 7(9):3523–3533, 2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Grogan, J. A., S. B. Leen, and P. E. McHugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials, 34(33):8049–8060, 2013.PubMedCrossRefGoogle Scholar
  15. 15.
    Gutierrez-Chico, J. L., E. Regar, E. Nuesch, et al. Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: In vivo assessment with optical coherence tomography. Circulation 124(5):612–623, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Hanratty, C., and S. Walsh. Longitudinal compression: a new complication with modern coronary stent platforms-time to think beyond deliverability. EuroIntervention 7:872–877, 2011.PubMedCrossRefGoogle Scholar
  17. 17.
    Hildick-Smith, D., A. J. de Belder, N. Cooter, et al. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: The british bifurcation coronary study: old, new, and evolving strategies. Circulation 121(10):1235–1243, 2010.PubMedCrossRefGoogle Scholar
  18. 18.
    Holzapfel, G. A. Non Linear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000. pp. 239–249.Google Scholar
  19. 19.
    Holzapfel, G. A., M. Stadler, and T. G. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: Computational assessment of parametric stent designs. J. Biomech. Eng. 127(1):166–180, 2005a.PubMedCrossRefGoogle Scholar
  20. 20.
    Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289(5):H2048–H2058, 2005b.PubMedCrossRefGoogle Scholar
  21. 21.
    Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35(11):1857–1869, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Laroche, D., S. Delorme, T. Anderson, and R. DiRaddo. Computer prediction of friction in balloon angioplasty and stent implantation. In: Biomedical Simulation. Lecture Notes in Computer Science, vol. 4072. Berlin: Springer, 2006, pp. 1–8.Google Scholar
  23. 23.
    Lefevre, T., O. Darremont, and R. Albiero. Provisional side branch stenting for the treatment of bifurcation lesions. EuroIntervention 6:65–71, 2010.CrossRefGoogle Scholar
  24. 24.
    Liang, D., D. Yang, M. Qi, and W. Wang. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int. J. Cardiol. 104(3):314–318, 2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Lim, D., S.-K. Cho, W.-P. Park, A. Kristensson, J.-Y. Ko, S. Al-Hassani, and H.-S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36(7):1118–1129, 2008.PubMedCrossRefGoogle Scholar
  26. 26.
    Magro, M., and R.-J. van Geuns. The tryton side branch stent. EuroIntervention 6:147–150, 2010.CrossRefGoogle Scholar
  27. 27.
    Martin, D., and F. Boyle. Finite element analysis of balloon-expandable coronary stent deployment: Influence of angioplasty balloon configuration. Int. J. Numer. Method Biomed. Eng. 29(11):1161–1175, 2013.PubMedCrossRefGoogle Scholar
  28. 28.
    Millman, R. S., and G. D. Parker. Elements of Differential Geometry. Berkeley: Prentice Hall Inc, 1977. pp. 46.Google Scholar
  29. 29.
    Morlacchi, S., and F. Migliavacca. Modeling stented coronary arteries: Where we are, where to go. Ann. Biomed. Eng. 41(7):1428–1444, 2013.PubMedCrossRefGoogle Scholar
  30. 30.
    Morlacchi, S., C. Chiastra, D. Gastaldi, G. Pennati, G. Dubini, and F. Migliavacca. Sequential structural and fluid dynamic nurical simulations of a stented bifurcated coronary artery. J. Biomech. Eng. 133(2):121010(1–11), 2011.Google Scholar
  31. 31.
    Morlacchi, S., C. Chiastra, E. Cutri, P. Zunino, F. Burzotta, L. Formaggia, G. Dubini, and F. Migliavacca. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and tryton-based culotte to treat bifurcations: a virtual simulation study. EuroIntervention 9:1441–1453, 2014.PubMedCrossRefGoogle Scholar
  32. 32.
    Mortier, P., S. Carlier, R. Van Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 130(2):021018(1–7), 2008.Google Scholar
  33. 33.
    Mortier, P., G. Holzapfel, M. De Beule, D. Loo, Y. Taeymans, P. Segers, P. Verdonck, and B. Verhegghe. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38(1):88–99, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Mortier, P., M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Virtual bench testing of new generation coronary stents. EuroIntervention 7:369–376, 2011.PubMedCrossRefGoogle Scholar
  35. 35.
    Mortier, P., Y. Hikichi, N. Foin, G. De Santis, P. Segers, B. Verhegghe, and M. De Beule. Provisional stenting of coronary bifurcations: insights into final kissing balloon post-dilation and stent design by computational modeling. JACC Cardiovasc. Interv. 7(3):325–333, 2014.PubMedCrossRefGoogle Scholar
  36. 36.
    Ozaki, Y., M. Okumura, T. F. Ismail, et al. The fate of incomplete stent apposition with drug- eluting stents: an optical coherence tomography-based natural history study. Eur. Heart J. 31:1470–1476, 2010.PubMedCrossRefGoogle Scholar
  37. 37.
    Pan, M., J. Suarez de Lezo, A. Medina, et al. Rapamycin-eluting stents for the treatment of bifurcated coronary lesions: a randomized comparison of a simple versus complex strategy. Am. Heart J. 148(5):857–864, 2004.PubMedCrossRefGoogle Scholar
  38. 38.
    Pant, S., G. Limbert, N. P. Curzen, and N. W. Bressloff. Multiobjective design optimisation of coronary stents. Biomaterials 32(31):7755–7773, 2011.PubMedCrossRefGoogle Scholar
  39. 39.
    Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model Mechanobiol. 11(1–2):61–82, 2012.PubMedCrossRefGoogle Scholar
  40. 40.
    Pleva, L., T. Jonszta, P. Kukla, J. Zapletalova, P. Berger, J. Mrozek, M. Porzer, and B. Obzut. Dedicated tryton side branch stents used in the treatment of coronary bifurcation lesions. Cor et Vasa, 2014. In press.Google Scholar
  41. 41.
    Ragkousis, G. E., N. Curzen, and N. W. Bressloff. Simulation of longitudinal stent deformation in a patient-specific coronary artery. Med. Eng. Phys. 36(4):467–476, 2014.PubMedCrossRefGoogle Scholar
  42. 42.
    Saab, M. A. Applications of high-pressure balloons in the medical device industry., September 2000. Assessed May 2014.
  43. 43.
    Vasa-Nicotera, M., and T. Gershlick. Stent thrombosis. In: Oxford Textbook of Interventional Cardiology. Oxford: Oxford University Press, chapter 29, pp. 504–523, 2010.Google Scholar
  44. 44.
    Waksman, R. Late thrombosis after radiation: sitting on a time bomb. Circulation 100(8):780–782, 1999.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang, D. L., B.-S. Wung, Y.-J. Shyy, C.-F. Lin, Y.-J. Chao, S. Usami, and S. Chien. Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells: effects of mechanical strain on monocyte adhesion to endothelial cells. Circ. Res. 77(2):294–302, 1995.PubMedCrossRefGoogle Scholar
  46. 46.
    Williams, D. P., M. Mamas, K. Morgan, M. El-Omar, B. Clarke, A. Brainbridge, Fath-Ordoubadi, and D. D. Fraser (2012) Longitudinal stent deformation: a retrospective analysis of frequency and mechanisms. EuroIntervention 8(2):267–74.Google Scholar
  47. 47.
    Zahedmanesh, H., J. Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery-determination of the optimum modelling strategy. J. Biomech. 43(11):2126–2132, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Georgios E. Ragkousis
    • 1
  • Nick Curzen
    • 2
    • 3
  • Neil W. Bressloff
    • 1
  1. 1.Computational Engineering & Design Group, Engineering & the EnvironmentUniversity of Southampton SouthamptonUK
  2. 2.Wessex Cardiothoracic and Vascular Care GroupUniversity Hospital Southampton, NHS Foundation TrustSouthamptonUK
  3. 3.Faculty of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations