Annals of Biomedical Engineering

, Volume 43, Issue 6, pp 1461–1473 | Cite as

pyNS: An Open-Source Framework for 0D Haemodynamic Modelling

  • Simone Manini
  • Luca Antiga
  • Lorenzo Botti
  • Andrea Remuzzi
Article

Abstract

A number of computational approaches have been proposed for the simulation of haemodynamics and vascular wall dynamics in complex vascular networks. Among them, 0D pulse wave propagation methods allow to efficiently model flow and pressure distributions and wall displacements throughout vascular networks at low computational costs. Although several techniques are documented in literature, the availability of open-source computational tools is still limited. We here present python Network Solver, a modular solver framework for 0D problems released under a BSD license as part of the archToolkit (http://archtk.github.com). As an application, we describe patient-specific models of the systemic circulation and detailed upper extremity for use in the prediction of maturation after surgical creation of vascular access for haemodialysis.

Keywords

0D modeling Vascular access Haemodialysis Blood flow adaptation Wall shear stress 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7-ICT-2007-2: Project ARCH n. 224390). Partners of the ARCH Consortium are: IRCCS Mario Negri Institute, Bergamo (IT); Academisch Ziekenhuis Maastricht (NL); Philips Medical Systems, Eindhoven (NL); Philips Research, Eindhoven (NL); Esaote Europe BV, Maastricht (NL); Ghent University (BE); Sheffield University (UK); Lubljana Medical University (SL).

References

  1. 1.
    Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11):1097–1112, 2008. cited By (since 1996) 41.Google Scholar
  2. 2.
    Azer, K., and C. Peskin. A one-dimensional model of blood flow in arteries with friction and convection based on the womersley velocity profile. Cardiovasc. Eng. 7(2):51–73, 2007.PubMedCrossRefGoogle Scholar
  3. 3.
    Bessems, D., C. Giannopapa, M. Rutten, and F. van de Vosse. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. J. Biomech. 41(2):284–291, 2008.PubMedCrossRefGoogle Scholar
  4. 4.
    Bessems, D., M. Rutten, and F. Van De Vosse. A wave propagation model of blood flow in large vessels using an approximate velocity profile function. J. Fluid Mech. 580:145–168, 2007.CrossRefGoogle Scholar
  5. 5.
    Botti, L., and D. A. Di Pietro. A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230:572–585, 2011.CrossRefGoogle Scholar
  6. 6.
    Botti, L., K. Van Canneyt, R. Kaminsky, T. Claessens, R. N. Planken, P. Verdonck, A. Remuzzi, and L. Antiga. Numerical evaluation and experimental validation of pressure drops across a patient-specific model of vascular access for hemodialysis. Cardiovasc. Eng. Technol. 4(4):485–499, 2013.CrossRefGoogle Scholar
  7. 7.
    Caroli, A., S. Manini, L. Antiga, K. Passera, B. Ene-Iordache, S. Rota, G. Remuzzi, A. Bode, J. Leermakers, F. N. van de Vosse, et al. Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int. 84(6):1237–1245, 2013.PubMedCrossRefGoogle Scholar
  8. 8.
    Cebral, J., M. Castro, C. Putman, and N. Alperin. Flow-area relationship in internal carotid and vertebral arteries. Physiol. Meas. 29(5):585, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Deane, C. R., and H. S. Markus. Colour velocity flow measurement: in vitro validation and application to human carotid arteries. Ultrasound Med. Biol. 23(3):447–452, 1997.PubMedCrossRefGoogle Scholar
  10. 10.
    Hendrikse, J., A. F. van Raamt, Y. van der Graaf, W. P. Mali, and J. van der Grond. Distribution of cerebral blood flow in the circle of willis1. Radiology 235(1):184–189, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    Huberts, W. Personalized Computational Modeling of Vascular Access Creation. PhD thesis, Biomedical Engineering Department, Maastricht University Medical Center, 2012.Google Scholar
  12. 12.
    Huberts, W., A. Bode, W. Kroon, R. Planken, J. Tordoir, F. van de Vosse, and E. Bosboom. A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med. Eng. Phys. 34(2):233–248, 2012.PubMedCrossRefGoogle Scholar
  13. 13.
    Huberts, W., E. Bosboom, and F. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Math. Biosci. Eng. 6(1):27, 2009.PubMedCrossRefGoogle Scholar
  14. 14.
    Huberts, W., C. de Jonge, W. van der Linden, M. Inda, J. Tordoir, F. van de Vosse, and E. Bosboom. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part a: identification of most influential model parameters. Med. Eng. Phys. 35(6):810–826, 2013.PubMedCrossRefGoogle Scholar
  15. 15.
    Huberts, W., C. de Jonge, W. van der Linden, M. Inda, K. Passera, J. Tordoir, F. van de Vosse, and E. Bosboom. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part b: identification of possible generic model parameters. Med. Eng. Phys. 35(6):827–837, 2013.PubMedCrossRefGoogle Scholar
  16. 16.
    Hughes, T., and J. Lubliner. On the one-dimensional theory of blood flow in the large vessels. Math. Biosci. 18(6–7):161–170, 1973.CrossRefGoogle Scholar
  17. 17.
    Jager, G. Electrical Model of the Human Systemic Arterial Tree. PhD thesis, Utrecht, RijksUniversity, 1965.Google Scholar
  18. 18.
    Manini, S., K. Passera, W. Huberts, L. Botti, L. Antiga, and A. Remuzzi. Computational model for simulation of vascular adaptation following vascular access surgery in haemodialysis patients. Comput. Methods Biomech. Biomed. Eng. 17(12):1358–1367, 2014.CrossRefGoogle Scholar
  19. 19.
    Marchandise, E., M. Willemet, and V. Lacroix. A numerical hemodynamic tool for predictive vascular surgery. Med. Eng. Phys. 31(1):131–144, 2009.PubMedCrossRefGoogle Scholar
  20. 20.
    Mulder, G., A. Bogaerds, P. Rongen, and F. van de Vosse. The influence of contrast agent injection on physiological flow in the circle of willis. Med. Eng. Phys. 33(2):195–203, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Passera, K., S. Manini, L. Antiga, and A. Remuzzi. Patient-specific model of arterial circulation for surgical planning of vascular access. J. Vasc. Access 14(2):180–192, 2012.PubMedCrossRefGoogle Scholar
  22. 22.
    Planken, R., X. Keuter, A. Hoeks, J. Kooman, F. Van Der Sande, A. Kessels, T. Leiner, and J. Tordoir. Diameter measurements of the forearm cephalic vein prior to vascular access creation in end-stage renal disease patients: graduated pressure cuff versus tourniquet vessel dilatation. Nephrol. Dial. Transplant. 21(3):802, 2006.PubMedCrossRefGoogle Scholar
  23. 23.
    Planken, R., X. Keuter, A. Kessels, A. Hoeks, T. Leiner, and J. Tordoir. Forearm cephalic vein cross-sectional area changes at incremental congestion pressures: towards a standardized and reproducible vein mapping protocol. J. Vasc. Surg. 44(2):353–358, 2006.PubMedCrossRefGoogle Scholar
  24. 24.
    Reymond, P., F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1):H208, 2009.PubMedCrossRefGoogle Scholar
  25. 25.
    Segers, P., N. Stergiopulos, P. Verdonck, and R. Verhoeven. Assessment of distributed arterial network models. Med. Biol. Eng. Comput. 35(6):729–736, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Sherwin, S., L. Formaggia, J. Peiro, and V. Franke. Computational modelling of 1d blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43(6–7):673–700, 2003.CrossRefGoogle Scholar
  27. 27.
    Steele, B., J. Wan, J. Ku, T. Hughes, and C. Taylor. In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans. Biomed. Eng. 50(6):649–656, 2003.PubMedCrossRefGoogle Scholar
  28. 28.
    Stergiopulos, N., B. Westerhof, and N. Westerhof. Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. Heart Circ. Physiol. 276(1):H81, 1999.Google Scholar
  29. 29.
    Tanaka, H., N. Fujita, T. Enoki, K. Matsumoto, Y. Watanabe, K. Murase, and H. Nakamura. Relationship between variations in the circle of willis and flow rates in internal carotid and basilar arteries determined by means of magnetic resonance imaging with semiautomated lumen segmentation: reference data from 125 healthy volunteers. Am. J. Neuroradiol. 27(8):1770–1775, 2006.PubMedGoogle Scholar
  30. 30.
    Westerhof, N., F. Bosman, C. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2(2):121–134, 1969.PubMedCrossRefGoogle Scholar
  31. 31.
    Westerhof, N., G. Elzinga, and P. Sipkema. An artificial arterial system for pumping hearts. J. Appl. Physiol. 31(5):776, 1971.PubMedGoogle Scholar
  32. 32.
    Wolters, B., M. Emmer, M. Rutten, G. Schurink, and F. Van De Vosse. Assessment of endoleak significance after endovascular repair of abdominal aortic aneurysms: a lumped parameter model. Med. Eng. Phys. 29(10):1106–1118, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Simone Manini
    • 1
  • Luca Antiga
    • 1
  • Lorenzo Botti
    • 3
  • Andrea Remuzzi
    • 2
    • 3
  1. 1.Orobix SrlBergamoItaly
  2. 2.Biomedical Engineering DepartmentIRCCS Mario Negri Institute for Pharmacological ResearchMilanItaly
  3. 3.Industrial Engineering DepartmentUniversity of BergamoBergamoItaly

Personalised recommendations