Annals of Biomedical Engineering

, Volume 43, Issue 8, pp 1841–1850 | Cite as

Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells

  • Raffaella Fior
  • Jeanie Kwok
  • Francesca Malfatti
  • Orfeo Sbaizero
  • Ratnesh Lal


Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response.


Microelectromechanical systems Microfabrication Atomic force microscopy Cell stretching Mechanosensitive ion channels 



The authors thank the staff of the Nano3 facilities at Calit2 at UCSD for the valuable support during the microfabrication process, Dr. Stefano Maggiolino at the University of Trieste for brainstorming. The authors also thank members of Nano-bio-imaging and Devices Laboratory at UCSD, especially Brian Meckes and Srinivasan Ramachandran for their input. F.M. acknowledges her advisor, Dr. Farooq Azam, and support from the Gordon and Betty Moore Foundation MMI initiative. This work was supported by NIH Grants R01DA025296 (R.L.) and R01DA024871 (R.L.), and MISE-ICE-CRUI Grant 16-06-2010 Project 99 and FVG Region LR 26/2005 Art. 23 (O.S.).


  1. 1.
    Addae-Mensah, K. A., and J. P. Wikswo. Measurement techniques for cellular biomechanics in vitro. Exp. Biol. Med. (Maywood) 233:792–809, 2008.CrossRefGoogle Scholar
  2. 2.
    Almqvist, N., et al. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86:1753–1762, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Arce, F. T., et al. Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin. Biophys. J. 95:886–894, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Arce, F. T., et al. Heterogeneous elastic response of human lung microvascular endothelial cells to barrier modulating stimuli. Nanomed. Nanotechnol. Biol. Med. 9:875–884, 2013.CrossRefGoogle Scholar
  5. 5.
    Bashir, R. BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56:1565–1586, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Bashir, R., J. Hilt, O. Elibol, A. Gupta, and N. Peppas. Micromechanical cantilever as an ultrasensitive pH microsensor. Appl. Phys. Lett. 81:3091–3093, 2002.CrossRefGoogle Scholar
  7. 7.
    Binnig, G., C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett. 56:930, 1986.PubMedCrossRefGoogle Scholar
  8. 8.
    Chronis, N., and L. P. Lee. Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J. Microelectromech. Syst. 14:857–863, 2005.CrossRefGoogle Scholar
  9. 9.
    Chronis, N., and L. P. Lee. Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on MEMS, IEEE, pp. 17–20, 2004.Google Scholar
  10. 10.
    Fior, R., S. Maggiolino, M. Lazzarino, and O. Sbaizero. A new transparent Bio-MEMS for uni-axial single cell stretching. Microsyst. Technol. 17:1581–1587, 2011.CrossRefGoogle Scholar
  11. 11.
    Fior, R., S. Maggiolino, M. Lazzarino, and O. Sbaizero. SPIE MOEMS-MEMS 792906-792906-6. International Society for Optics and Photonics, 2011.Google Scholar
  12. 12.
    Flynn, A. M., et al. Piezoelectric micromotors for microrobots. J. Microelectromech. Syst. 1:44–51, 1992.CrossRefGoogle Scholar
  13. 13.
    Gosse, C., and V. Croquette. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82:3314–3329, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gupta, A., D. Akin, and R. Bashir. Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J. Vac. Sci. Technol. B 22:2785–2791, 2004.CrossRefGoogle Scholar
  15. 15.
    Hilt, J. Z., A. K. Gupta, R. Bashir, and N. A. Peppas. Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed. Microdev. 5:177–184, 2003.CrossRefGoogle Scholar
  16. 16.
    Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.PubMedCrossRefGoogle Scholar
  17. 17.
    Huang, S., and D. E. Ingber. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175–176, 2005.PubMedCrossRefGoogle Scholar
  18. 18.
    Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35:564–577, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeong, K.-H., and L. P. Lee. A novel microfabrication of a self-aligned vertical comb drive on a single SOI wafer for optical MEMS applications. J. Micromech. Microeng. 15:277, 2005.CrossRefGoogle Scholar
  20. 20.
    Johnston, I. D., D. K. McCluskey, C. K. L. Tan, and M. C. Tracey. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24:035017, 2014.CrossRefGoogle Scholar
  21. 21.
    Kabir, A., et al. High sensitivity acoustic transducers with thin p+ membranes and gold back-plate. Sens. Actuators A 78:138–142, 1999.CrossRefGoogle Scholar
  22. 22.
    Kim, D.-H., P. K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11:203–233, 2009.PubMedCrossRefGoogle Scholar
  23. 23.
    Lal, R., and S. A. John. Biological applications of atomic force microscopy. Am. J. Physiol. Cell Physiol. 266:C1–C21, 1994.Google Scholar
  24. 24.
    Luque, T., et al. Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomater. 9:6852–6859, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    MacKay, J. L., and S. Kumar. Cell Imaging Techniques. Berlin: Springer, pp. 313–329, 2013.Google Scholar
  26. 26.
    Mann, J. M., R. H. W. Lam, S. Weng, Y. Sun, and J. Fu. A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12:731–740, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Milanovic, V., S. Kwon, and L. P. Lee. Monolithic vertical combdrive actuators for adaptive optics. Conference Digest. 2002 IEEE/LEOS International Conference on Optical MEMS, IEEE, pp. 57–58, 2002.Google Scholar
  28. 28.
    Neuman, K. C., and A. Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:491, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Neumann, A., et al. Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro. J. Mater. Sci. Mater. Med. 15:1135–1140, 2004.PubMedCrossRefGoogle Scholar
  30. 30.
    Nguyen, N.-T., X. Huang, and T. K. Chuan. MEMS-micropumps: a review. J. Fluids Eng. 124:384–392, 2002.CrossRefGoogle Scholar
  31. 31.
    Nguyen, T. D., et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7:587–593, 2012.PubMedCrossRefGoogle Scholar
  32. 32.
    Pelham, R. J., and Y.-L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. 94:13661–13665, 1997.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Pfister, B. J., T. P. Weihs, M. Betenbaugh, and G. Bao. An in vitro uniaxial stretch model for axonal injury. Ann. Biomed. Eng. 31:589–598, 2003.PubMedCrossRefGoogle Scholar
  34. 34.
    Quist, A., A. Chand, S. Ramachandran, D. Cohen, and R. Lal. Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels. Lab Chip 6:1450–1454, 2006.PubMedCrossRefGoogle Scholar
  35. 35.
    Radmacher, M., M. Fritz, C. M. Kacher, J. P. Cleveland, and P. K. Hansma. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70:556–567, 1996.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ruder, W. C., et al. Calcium signaling is gated by a mechanical threshold in three-dimensional. Sci. Rep. 2:1–6, 2012.CrossRefGoogle Scholar
  37. 37.
    Scuor, N., et al. Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomed. Microdevices 8:239–246, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Shroff, S. G., D. R. Saner, and R. Lal. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am. J. Physiol. Cell Physiol. 269:C286–C292, 1995.Google Scholar
  39. 39.
    Sniadecki, N. J., et al. Magnetic microposts as an approach to apply forces to living cells. Proc. Natl. Acad. Sci. 104:14553–14558, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Yang, L., and R. Bashir. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 26:135–150, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao, R., T. Boudou, W. G. Wang, C. S. Chen, and D. H. Reich. Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Adv. Mater. 25:1699–1705, 2013.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Raffaella Fior
    • 1
    • 5
  • Jeanie Kwok
    • 2
    • 3
  • Francesca Malfatti
    • 4
  • Orfeo Sbaizero
    • 5
  • Ratnesh Lal
    • 1
    • 2
    • 3
    • 6
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of California, San DiegoLa JollaUSA
  3. 3.Materials Science and Engineering ProgramUniversity of California, San DiegoLa JollaUSA
  4. 4.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  5. 5.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
  6. 6.University of California, San DiegoLa JollaUSA

Personalised recommendations