Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 8, pp 1978–1988 | Cite as

Repairing Fetal Membranes with a Self-adhesive Ultrathin Polymeric Film: Evaluation in Mid-gestational Rabbit Model

  • Virginia PensabeneEmail author
  • Premal P. Patel
  • Phillip Williams
  • Trisha L. Cooper
  • Kellye C. Kirkbride
  • Todd D. Giorgio
  • Noel B. Tulipan
Article

Abstract

Preterm premature rupture of membranes causes 40% of all preterm births, affecting 150000 women each year in the United States. Prenatal diagnostic procedures and surgical interventions increase incidence of adverse events, leading to iatrogenic membrane rupture after a fetoscopic procedure in 45% of cases. We propose an ultrathin, self-adherent, poly-l-lactic acid patch (“nanofilm”) as a reparative wound closure after endoscopic/fetoscopic procedures. These nanofilms are compatible with application in wet conditions and with minimally invasive instrumentation. Ex vivo studies to evaluate the nanofilm were conducted using human chorion–amnion (CA) membranes. A custom-built inflation device was used for mechanical characterization of CA membranes and for assessment of nanofilm adhesion and sealing of membrane defects up to 3 mm in size. These ex vivo tests demonstrated the ability of the nanofilm to seal human CA defects ranging in size from 1 to 3 mm in diameter. In vivo survival studies were conducted in 25 mid-gestational rabbits, defects were created by perforating the uterus and the CA membranes and subsequently using the nanofilm to seal these wounds. These in vivo studies confirmed the successful sealing of defects smaller than 3 mm observed ex vivo. Histological analysis of whole harvested uteri 7 days after surgery showed intact uterine walls in 59% of the nanofilm repaired fetuses, along with increased uterine size and intrauterine development in 63% of the cases. In summary, we have developed an ultrathin, self-adhesive nanofilm for repair of uterine membrane defects.

Keywords

Fetal surgery IPPROM Amnion Chorion Ultrathin polymeric film Poly l-lactic acid 

Notes

Acknowledgments

The authors would like to acknowledge the staff at Division of Surgical Research, Vanderbilt University Medical Center for their support during animal surgery, Prof. Hernan Correa and Dr. Lacey Winchester from the Department of Pathology, Microbiology, and Immunology at Vanderbilt University Medical Center for their help for histological analysis. Special thanks are due to Dr. Kellie Boyle and the Translational Pathology Shared Resource at Vanderbilt University Medical Center. The authors are also grateful to Alicia K. Crum, Registered Diagnostic Medical Sonographer from the Department of fetal medicine for her support for ultrasound, Lynne Black and Prof. Kelly Bennett from the Division of Maternal Fetal Medicine for their help for human placenta collection and IRB approval, and Emily Guess and all the nurses at Labor&Delivery at Vanderbilt University Medical Center for tissues collections.

Disclosures

All authors disclosed no financial relationships relevant to this publication. This study was supported by an internal ViSE (Vanderbilt Initiative in Surgery and Engineering) grant and Vanderbilt Institute for Clinical and Translational Research (VICTR) within the project “Self-adhesive patch for fetal and obstetrical surgery and by CTSA award no. UL1TR000445 from the National Center for Advancing Translational Sciences. Its contents are solely the responsibility of the authors and do not necessarily represent official views of the National Center for Advancing Translational Sciences or the National Institutes of Health.

Supplementary material

Supplementary material 1 (WMV 17387 kb)

References

  1. 1.
    Aagaard-Tillery, K. M., F. S. Nuthalapaty, P. S. Ramsey, and K. D. Ramin. Preterm premature rupture of membranes: perspectives surrounding controversies in management. Am. J. Perinatol. 22(6):287–297, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Adzick, N. S., E. A. Thom, C. Y. Spong, J. W. Brock, III, P. K. Burrows, M. P. Johnson, L. J. Howell, J. A. Farrell, M. E. Dabrowiak, L. N. Sutton, N. Gupta, N. B. Tulipan, M. E. D’Alton, and D. L. Farmer. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 364(11):993–1004, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Beaudoin, S., P. Barbet, and F. Bargy. Developmental stages in the rabbit embryo: guidelines to choose an appropriate experimental model. Fetal. Diagn. Ther. 18:422–427, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Beck, V., et al. Preterm prelabor rupture of membranes and fetal survival after minimally invasive fetal surgery: a systematic review of the literature. Fetal Diagn. Ther. 31:1–9, 2012.PubMedCrossRefGoogle Scholar
  5. 5.
    Behzad, F., M. R. Dickinson, A. Charlton, and J. D. Aplin. Brief communication: sliding displacement of amnion and chorion following controlled laser wounding suggests a mechanism for short-term sealing of ruptured membranes. Placenta 15:775–778, 1994.PubMedCrossRefGoogle Scholar
  6. 6.
    Benirschke, K., G. J. Burton, and R. N. Baergen. Anatomy and pathology of the placental membranes. Pathology of the human placenta6th, New York: Springer, 2012, pp. 249–307.CrossRefGoogle Scholar
  7. 7.
    Bilic, G., et al. Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro. Am. J. Obstet. Gynecol. 02:85.e1–85.e9, 2001.Google Scholar
  8. 8.
    Boulet, S. L., Q. Yang, C. Mai, et al. Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res. A. Clin. Mol. Teratol 82(7):527–532, 2008.PubMedCrossRefGoogle Scholar
  9. 9.
    Chua, W. K., and M. L. Oyen. Do we know the strength of the chorioamnion? A critical review and analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 1445:S128–S133, 2009.CrossRefGoogle Scholar
  10. 10.
    Devlieger, R., L. K. Millar, G. Bryant-Greenwood, L. Lewi, and J. A. Deprest. Fetal membrane healing after spontaneous and iatrogenic membrane rupture: a review of current evidence. Am. J. Obstet. Gynecol. 195:1512–1520, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Fisk, N. M., D. Ronderos-Dumit, Y. Tannirandorn, U. Nicolini, D. Talbert, and C. H. Rodeck. Normal amniotic pressure throughout gestation. BJOG 99(1):18–22, 1992.CrossRefGoogle Scholar
  12. 12.
    Fujino, K., M. Kinoshita, A. Saitoh, H. Yano, K. Nishikawa, T. Fujie, K. Iwaya, M. Kakihara, S. Takeoka, D. Saitoh, and Y. Tanaka. Novel technique of overlaying a poly-l-lactic acid nanosheet for adhesion prophylaxis and fixation of intraperitoneal onlay polypropylene mesh in a rabbit model. Surg. Endosc. 25(10):3428–3436, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Gratacós, E., J. Sanin-Blair, L. Lewi, N. Toran, G. Verbist, L. Cabero, and J. Deprest. A histological study of fetoscopic membrane defects to document membrane healing. Placenta 27:452–456, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Gratacos, E., H. Yamamoto, N. A. Papadopulos, T. Andriaenssens, T. Phlips, T. E. Lerut, and J. A. Deprest. The midgestational rabbit as a model for the creation of membrane defects after needle fetoscopy. Am. J. Obstet. Gynecol. 180(5):1263–1267, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Haller, C. M., W. Buerzle, C. E. Brubaker, P. B. Messersmith, E. Mazza, N. Ochsenbein-Koelble, R. Zimmermann, and M. Ehrbar. Mussle-mimetic tissue adhesive for fetal membrane repair: a standardized ex vivo evaluation using elastomeric membranes. Prenat. Diagn. 31:654–660, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Laufer, A., W. Z. Polishuk, J. Boxer, and R. Ganzfried. Studies of amniotic membranes. J. Reprod. Fertil. 12:99–105, 1966.PubMedCrossRefGoogle Scholar
  17. 17.
    MacLachlan, T. B. A method for the investigation of the strength of the fetal membranes. Am. J. Obstet. Gynecol. 91:309–313, 1965.PubMedGoogle Scholar
  18. 18.
    Mercer, B. M. Preterm premature rupture of the membranes: diagnosis and management. Clin. Perinatol. 31(4):765–782, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Moore, R. M., J. M. Mansour, R. W. Redline, B. M. Mercer, and J. J. Moore. The Physiology of fetal membrane rupture: insight gained from the determination of Physical properties. Placenta 27:1037–1051, 2006.PubMedCrossRefGoogle Scholar
  20. 20.
    Okamura, Y., K. Kabata, M. Kinoshita, D. Saitoh, and S. Takeoka. Free-standing biodegradable poly(lactic acid) nanosheet for sealing operations in surgery. Adv. Mater. 21(43):4388–4392, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Oyen, M. L., S. E. Calvin, and D. V. Landers. Premature rupture of fetal membrane: is the amnion the major determinant? Am. J. Obstet. Gynecol. 195:510–515, 2006.PubMedCrossRefGoogle Scholar
  22. 22.
    Papadopulos, N. A., P. P. Van Ballaer, J. L. Ordonez, I. J. Laermans, K. Vandenberghe, T. E. Lerut, and J. A. Deprest. Fetal membrane closing techniques after hysteroamniotomy in the midgestational rabbit model. Am. J. Obstet. Gynecol. 178(5):938–942, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Peiro, J. L., C. G. Fontecha, R. Ruano, M. Esteves, C. Fonseca, M. Marotta, S. Haeri, and M. A. Belfort. Single Access Fetal Endoscopy (SAFE) for myelomeningocele in sheep model I: amniotic carbon dioxide gas approach. Surg. Endosc. 27:3835–3840, 2013.PubMedCrossRefGoogle Scholar
  24. 24.
    Pensabene, V., S. Taccola, L. Ricotti, G. Ciofani, A. Menciassi, F. Perut, M. Salerno, P. Dario, and N. Baldini. Flexible polymeric ultrathin film for mesenchymal stem cell differentiation. Acta Biomater. 7:2883–2891, 2011.PubMedCrossRefGoogle Scholar
  25. 25.
    Perrini, M., W. Burzle, C. Haller, N. Ochsenbein-Kolble, J. Deprest, R. Zimmermann, E. Mazza, and M. Ehrbar. Contractions, a risk for premature rupture of fetal membranes: a new protocol with cyclic biaxial tension. Med. Eng. Phys. 35(6):846–851, 2013.PubMedCrossRefGoogle Scholar
  26. 26.
    Polishuk, W. Z., S. Kohane, and A. Hader. Fetal weight and membrane tensile strength. Am. J. Obstet. Gynecol. 20:204–250, 1964.Google Scholar
  27. 27.
    Polishuk, W. Z., S. Konhane, and A. Peranio. The physical properties of fetal membranes. Obstet. Gynecol. 20:204–210, 1962.PubMedGoogle Scholar
  28. 28.
    Ricotti, L., S. Taccola, V. Pensabene, V. Mattoli, T. Fujie, S. Takeoka, A. Menciassi, and P. Dario. Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films. Biomed. Microdev. 12:809–819, 2010.CrossRefGoogle Scholar
  29. 29.
    Schmidt, W. The amniotic fluid compartment: the fetal habitat. Adv. Anat. Embryol. Cell. Biol. 127:1–100, 1992.PubMedCrossRefGoogle Scholar
  30. 30.
    Sydorak, R., A. Nijagal, and C. T. Albanese. Endoscopic techniques. Yonsei Med. J. 42(6):695–710, 2001.PubMedCrossRefGoogle Scholar
  31. 31.
    Taccola, S., A. Desii, V. Pensabene, T. Fujie, A. Saito, S. Takeoka, P. Dario, A. Menciassi, and V. Mattoli. Free-standing poly(l-lactic acid) nanofilms loaded with superparamagnetic nanoparticles. Langmuir 27:5589–5595, 2011.PubMedCrossRefGoogle Scholar
  32. 32.
    Wyatt-Ashmead, J., and A. Ashmead. Placental membrane bursting pressures. Mod. Pathol. 17:275, 2004.Google Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Virginia Pensabene
    • 1
    Email author
  • Premal P. Patel
    • 1
  • Phillip Williams
    • 2
  • Trisha L. Cooper
    • 3
  • Kellye C. Kirkbride
    • 1
  • Todd D. Giorgio
    • 1
  • Noel B. Tulipan
    • 3
  1. 1.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Department of SurgeryVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of Pediatric NeurosurgeryMonroe Carrell Jr Children’s Hospital at VanderbiltNashvilleUSA

Personalised recommendations