Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 8, pp 1957–1964 | Cite as

Vibrating Frequency Thresholds in Mice and Rats: Implications for the Effects of Vibrations on Animal Health

  • Karyne N. Rabey
  • Yao Li
  • John N. Norton
  • Randall P. Reynolds
  • Daniel Schmitt
Article

Abstract

Vibrations in research facilities can cause complex animal behavioral and physiological responses that can affect animal health and research outcomes. The goal of this study was to determine the range of frequency values, where animals are unable to attenuate vibrations, and therefore may be most susceptible to their effects. Anesthetized and euthanized adult rats and mice were exposed to vibration frequencies over a wide range (0–600 Hz) and at a constant magnitude of 0.3 m/s2. Euthanized animals were additionally exposed to vibrations at an acceleration of 1 m/s2. The data showed that at most frequencies rodents were able to attenuate vibration magnitudes, with values for the back-mounted accelerometer being substantially less than that of the table. At frequencies of 41–60 Hz mice did not attenuate vibration magnitude, but instead the magnitude of the table and animal were equal or amplified. Rats experienced the same pattern of non-attenuation between 31 and 50 Hz. Once euthanized, the mice vibrated at a slightly more elevated frequency (up to 100 Hz). Based on these results, it may be prudent that in laboratory settings, vibrations in the ranges reported here should be accounted for as possible contributors to animal stress and/or biomechanical changes.

Keywords

Whole-body vibrations Rodents Resonance frequency range Sensitivity frequency range Animal health 

Notes

Acknowledgments

We would like to thank Pramodh Ganapathy, Jozsef Bordas, and Drs. Roxanne Larsen and Charlotte Miller for their help and support throughout this project. This study was funded by the American Association of Laboratory Animal Science Grants for Laboratory Animal Science (GLAS) and the American College of Laboratory Animal Medicine Foundation Grants.

References

  1. 1.
    Abeyesinghe, S. M., C. M. Wathes, C. J. Nicol, and J. M. Randall. The aversion of broiler chickens to concurrent vibrational and thermal stressors. Appl. Anim. Behav. Sci. 73:199–215, 2011.CrossRefGoogle Scholar
  2. 2.
    Ariizumi, M., and A. Okada. Effect of whole-body vibration on the rat brain content of serotonin and plasma corticosterone. Eur. J. Appl. Physiol. 52:15–19, 1983.CrossRefGoogle Scholar
  3. 3.
    Buckley, J. P., and H. H. Smooker. Cardiovascular and biochemical effects of chronic intermittent neurogenic stimulation. In: Physiological Effects of Noise, edited by B. L. Welch, and A. S. Welch. New York: Plenum Press, 1970, pp. 74–85.Google Scholar
  4. 4.
    Ceccarelli, G., L. Benedetti, D. Galli, D. Prè, G. Silvani, N. Crosetto, G. Magenes, and M. G. C. De Angelis. MGC. Low-amplitude high-frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells. J. Tissue Eng. Regen. Med. 8:396–406, 2012.PubMedCrossRefGoogle Scholar
  5. 5.
    Christiansen, B. A., and M. J. Silva. The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice. Ann. Biomed. Eng. 32:1149–1156, 2006.CrossRefGoogle Scholar
  6. 6.
    Edwards, R. G., E. P. McCutcheon, and C. F. Knapp. Cardiovascular changes produced by brief whole-body vibration of animals. J. Appl. Physiol. 32:386–390, 1972.PubMedGoogle Scholar
  7. 7.
    Faith, R. F., and S. J. Miller. The need for sound and vibration standards in US research animal rooms. ALN Magazine July/August: 31–38, 2007.Google Scholar
  8. 8.
    Fritton, J. C., C. T. Rubin, Y. X. Qin, and K. J. McLeod. Whole-body vibration in the skeleton: development of a resonance-based testing device. Ann. Biomed. Eng. 25:831–839, 1997.PubMedCrossRefGoogle Scholar
  9. 9.
    Gebresenbet, G., S. Aradom, F. S. Bulitta, and E. Hjerpe. Vibration levels and frequencies on vehicle and animals during transport. Biosyst. Eng. 110:10–19, 2011.CrossRefGoogle Scholar
  10. 10.
    Griffin, M. J. Whole-body vibration and health. In: Handbook of Human Vibration, edited by M. J. Griffin. San Diego: Elsevier Academic Press, 1996, pp. 171–220.Google Scholar
  11. 11.
    Hill, P. S. M. Vibration and animal communication: a review. Integr. Comp. Biol. 41:1135–1142, 2001.CrossRefGoogle Scholar
  12. 12.
    Judex, S., S. Boyd, Y.-X. Qin, S. Turner, K. Ye, R. Müller, and C. Rubin. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. J. Biomed. Eng. 31:12–20, 2003.Google Scholar
  13. 13.
    Judex, S., L.-R. Donahue, and C. Rubin. Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J. 16:1280–1282, 2002.PubMedGoogle Scholar
  14. 14.
    Li, Y., Y. Liu, Z. Jiang, J. Guan, G. Yi, S. Cheng, B. Yang, T. Fu, and Z. Wang. Behavioral changes related to Wenchuan devastating earthquake in mice. Bioelectromagnetics 30:613–620, 2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Ljunggren, F., J. Wang, and A. Agren. Human vibration perception from single- and dual-frequency components. J. Sound Vib. 300:13–24, 2007.CrossRefGoogle Scholar
  16. 16.
    Lynch, M. A., M. D. Brodt, and M. J. Silva. Skeletal effects of whole-body vibration in adult and aged mice. J. Orthopaed. Res. 28:241–247, 2009.Google Scholar
  17. 17.
    McKeehen, J. N., S. A. Novotny, K. A. Baltgalvis, J. A. Call, D. J. Nuckley, and D. A. Lowe. Adaptations of mouse skeletal muscle to low-intensity vibration training. Med. Sci. Sports Exerc. 45:1051–1059, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Norton, J. N., W. L. Kinard, and R. P. Reynolds. Comparative vibration levels perceived among species in a laboratory animal facility. J. Am. Assoc. Lab. Anim. Sci. 50:653–659, 2011.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Parsons, K. C., and M. J. Griffin. Whole-body vibration perception threshold. J. Sound Vib. 121:237–258, 1988.CrossRefGoogle Scholar
  20. 20.
    Perremans, S., J. M. Randall, G. Rombouts, E. Decuypere, and R. Geers. Effect of whole-body vibration in the vertical axis on cortisol and adrenocorticotropic hormone levels in piglets. J. Anim. Sci. 79:975–981, 2001.PubMedGoogle Scholar
  21. 21.
    Prisby, R. D., M.-H. Lafage-Proust, L. Malaval, A. Belli, and L. Vico. Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know. Ageing Res. Rev. 7:319–329, 2008.PubMedCrossRefGoogle Scholar
  22. 22.
    Randall, J. M., J. A. Duggan, M. A. Alami, and R. P. White. Frequency weighting for the aversion of broiler chickens to horizontal and vertical vibration. J. Agric. Eng. Res. 68:387–397, 1997a.Google Scholar
  23. 23.
    Randall, J. M., R. T. Mathews, and M. A. Stiles. Resonant frequencies of standing humans. Ergonomics 40:879–886, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Reynolds, R. P., W. L. Kinard, J. J. Degraff, N. Leverage, and J. N. Norton. Noise in a laboratory animal facility from the human and mouse perspectives. J. Am. Assoc. Lab. Anim. Sci. 49:592–597, 2010.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Romans, J. Effect of severe whole-body vibration on mice and methods of protection from vibration injury. WADC Techical Report 58-107, ASTIA Document No. AD 151070. Wright-Patterson Air Force Base (OH): Wright Air Development Centre, 1958.Google Scholar
  26. 26.
    Rubin, C. T., E. Capilla, Y. K. Luu, B. Busa, H. Crawford, D. J. Noland, V. Mittal, C. J. Rosen, J. E. Pessin, and S. Judex. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc. Natl Acad. Sci. U.S.A. 104:17879–17884, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Rubin, C. T., D. W. Sommerfeldt, S. Judex, and Y.-X. Qin. Inhibition of osteopenia by low-magnitude, high-frequency mechanical stimuli. Drug Discov. Today 6:848–858, 2001.PubMedCrossRefGoogle Scholar
  28. 28.
    Rubin, C. T., A. S. Turner, S. Bain, C. Mallinckrodt, and K. McLoed. Low mechanical signal strengthen long bones. Nature 412:603–604, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Rubin, C. T., A. S. Turner, R. Muller, E. Mittra, K. McLoed, W. Lin, and Y.-X. Qin. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J. Bone Miner. Res. 17:349–357, 2002.PubMedCrossRefGoogle Scholar
  30. 30.
    Sackler, A. M., and A. S. Weltman. Effects of vibration on the endocrine system of male and female rats. Aerospace Med. 37:158–166, 1966.PubMedGoogle Scholar
  31. 31.
    Sales, G. D., K. J. Wilson, K. E. Spencer, and S. R. Milligan. Environmental ultrasound in laboratories and animal houses: a possible cause for concern in the welfare and use of laboratory animals. Lab. Anim. 22:369–375, 1988.PubMedCrossRefGoogle Scholar
  32. 32.
    Toraason, M. A., D. W. Badger, and G. L. Wright. Gastroinstestinal response in rats to vibration and restraint. Environ. Res. 23:341–347, 1980.PubMedCrossRefGoogle Scholar
  33. 33.
    Ushakov, I. B., N. V. Soloshenko, and A. P. Koslovskij. The examination of resonance frequencies of vibration in rats. Kosm Biol Aviakosm Med. 17:65–68, 1983.PubMedGoogle Scholar
  34. 34.
    Ward, K., C. Alsop, J. Caulton, C. Rubin, J. Adams, and Z. Mughal. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J. Bone Miner. Res. 19:360–369, 2004.PubMedCrossRefGoogle Scholar
  35. 35.
    Wegner, K. H., J. D. Freeman, S. Fulzele, D. M. Immel, B. D. Powell, P. Molitor, Y. J. Chao, H.-S. Gao, M. Wlsalanty, M. W. Hamrick, C. M. Isales, and J. C. Yu. Effect of whole-body vibration on bone properties in aging mice. Bone 47:746–755, 2010.CrossRefGoogle Scholar
  36. 36.
    Xie, L., J. M. Jacobson, E. S. Choi, B. Busa, L. R. Donahue, L. M. Miler, C. T. Rubin, and S. Judex. Low-level mechanical vibrations can influence bone resorption in the growing skeleton. Bone 39:1059–1066, 2006.PubMedCrossRefGoogle Scholar
  37. 37.
    Xie, L., C. T. Rubin, and S. Judex. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J. Appl. Physiol. 104:1056–1062, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Karyne N. Rabey
    • 1
    • 3
  • Yao Li
    • 2
  • John N. Norton
    • 2
  • Randall P. Reynolds
    • 2
  • Daniel Schmitt
    • 1
  1. 1.Department of Evolutionary AnthropologyDuke UniversityDurhamUSA
  2. 2.The Division of Laboratory Animal ResourcesDuke University Medical CenterDurhamUSA
  3. 3.Department of Evolutionary AnthropologyDuke UniversityDurhamUSA

Personalised recommendations