Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 1, pp 139–153 | Cite as

Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method

  • Michalis Xenos
  • Nicos Labropoulos
  • Suraj Rambhia
  • Yared Alemu
  • Shmuel Einav
  • Apostolos Tassiopoulos
  • Natzi Sakalihasan
  • Danny BluesteinEmail author
Article

Abstract

Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.

Keywords

Rupture of abdominal aortic aneurysm Rupture potential index Fluid-structure interaction Reconstruction of patient-based geometry 

Notes

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

10439_2014_1224_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1163 kb)

References

  1. 1.
    Bluestein, D., Y. Alemu, I. Avrahami, et al. Influence of microcalcifications on vulnerable plaque mechanics using fsi modeling. J. Biomech. 41:1111–1118, 2008.PubMedCrossRefGoogle Scholar
  2. 2.
    Bluestein, D., K. Dumont, M. De Beule, et al. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—fsi modelling. Comput. Methods Biomech. Biomed. Eng. 12:73–81, 2008.CrossRefGoogle Scholar
  3. 3.
    Chandra, S., S. S. Raut, A. Jana, et al. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J. Biomech. Eng. 135:081001, 2013.CrossRefGoogle Scholar
  4. 4.
    Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108:189–192, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    de Putter, S., B. J. Wolters, M. C. Rutten, et al. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40:1081–1090, 2006.PubMedCrossRefGoogle Scholar
  6. 6.
    Di Martino, E. S., A. Bohra, and J. P. Vande Geest. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Di Martino, E. S., G. Guadagni, A. Fumero, et al. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 23:647–655, 2001.PubMedCrossRefGoogle Scholar
  8. 8.
    Di Martino, E., S. Mantero, F. Inzoli, et al. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur. J. Vasc. Endovasc. Surg. 15:290–299, 1998.PubMedCrossRefGoogle Scholar
  9. 9.
    Di Martino, E. S., and D. A. Vorp. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31:804–809, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Doyle, B. J., A. Callanan, P. A. Grace, and E. G. Kavanagh. On the influence of patient-specific material properties in computational simulations: a case study of a large ruptured abdominal aortic aneurysm. Int. J. Numer. Methods Biomed. Eng. 29:150–164, 2013.CrossRefGoogle Scholar
  11. 11.
    Doyle, B. J., A. J. Cloonan, M. T. Walsh, D. A. Vorp, and T. M. McGloughlin. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43:1408–1416, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Doyle, B. J., P. R. Hoskins, and T. M. McGloughlin. Computational rupture prediction of AAAs: what needs to be done next? J. Endovasc. Ther. 18:226–229, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Erdemira, A., T. M. Guess, J. Halloran, S. C. Tadepalli, and T. M. Morrison. Considerations for reporting finite element analysis studies in biomechanics. J. Biomech. 45:625–633, 2012.CrossRefGoogle Scholar
  14. 14.
    Ferruzzi, J., D. A. Vorp, and J. D. Humphrey. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J. R. Soc. Interface 8:435–450, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Fillinger, M. The long-term relationship of wall stress to the natural history of abdominal aortic aneurysms (finite element analysis and other methods). Ann N Y Acad Sci 1085:22–28, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Fillinger, M. F., S. P. Marra, M. L. Raghavan, F. E. Kennedy, and . Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003.PubMedCrossRefGoogle Scholar
  17. 17.
    Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36:589–597, 2002.PubMedCrossRefGoogle Scholar
  18. 18.
    Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40:176–185, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Gasser, T. C., S. Gallinetti, X. Xing, et al. Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics. Acta Biomater. 8:3091–3103, 2012.PubMedCrossRefGoogle Scholar
  20. 20.
    Giuma, S. K. B., K. Osman, and M. R. A. Kadir. Fluid structure interaction analysis in abdominal aortic aneurysms: influence of diameter, length, and distal neck. J. Med. Imaging Health Inform. 3:514–522, 2013.CrossRefGoogle Scholar
  21. 21.
    Holzapfel, G. A., and T. C. Gasser. Computational stress-deformation analysis of arterial walls including high-pressure response. Int. J. Cardiol. 116:78–85, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.CrossRefGoogle Scholar
  23. 23.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J. Biomech. Eng. Trans. ASME 126:264–275, 2004.CrossRefGoogle Scholar
  24. 24.
    Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A Solids. 21:441–463, 2002.CrossRefGoogle Scholar
  25. 25.
    Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.PubMedCrossRefGoogle Scholar
  26. 26.
    Holzapfel, G., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. Trans. ASME. 127:166–180, 2005.CrossRefGoogle Scholar
  27. 27.
    Hsu, M. C., and Y. Bazilevs. Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem. Anal. Des. 47:593–599, 2011.CrossRefGoogle Scholar
  28. 28.
    Humphrey, J. D., and G. A. Holzapfel. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45:805–814, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kim, H. J., I. E. Vignon-Clementel, C. A. Figueroa, et al. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37:2153–2169, 2009.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee, K., J. J. Zhu, J. Shum, et al. Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis. Ann. Biomed. Eng. 41:562–576, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Maier, A., M. W. Gee, C. Reeps, H. H. Eckstein, and W. A. Wall. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech. Model. Mechanobiol. 9:511–521, 2010.PubMedCrossRefGoogle Scholar
  32. 32.
    Maier, A., M. W. Gee, C. Reeps, et al. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.PubMedCrossRefGoogle Scholar
  33. 33.
    Martufi, G., and T. C. Gasser. Review: the role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms. J. Biomech. Eng. 135:021010, 2013.PubMedCrossRefGoogle Scholar
  34. 34.
    McGloughlin, T. M., and B. J. Doyle. New approaches to abdominal aortic aneurysm rupture risk assessment engineering insights with clinical gain. Arterioscler. Thromb. Vasc. Biol. 30:1687–1694, 2010.PubMedCrossRefGoogle Scholar
  35. 35.
    Michel, J. B., J. L. Martin-Ventura, J. Egido, et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 90:18–27, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Olufsen, M. S., C. S. Peskin, W. Y. Kim, et al. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299, 2000.PubMedCrossRefGoogle Scholar
  37. 37.
    Papaharilaou, Y., J. A. Ekaterinaris, E. Manousaki, and A. N. Katsamouris. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40:367–377, 2007.PubMedCrossRefGoogle Scholar
  38. 38.
    Polzer, S., T. C. Gasser, J. Bursa, et al. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med. Eng. Phys. 35:1282–1289, 2013.PubMedCrossRefGoogle Scholar
  39. 39.
    Polzer, S., T. C. Gasser, J. Swedenborg, and J. Bursa. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 41:467–473, 2011.PubMedCrossRefGoogle Scholar
  40. 40.
    Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.PubMedCrossRefGoogle Scholar
  41. 41.
    Raut, S. S., S. Chandra, J. Shum, and E. A. Finol. The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment. Ann. Biomed. Eng. 41:1459–1477, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Raut, S. S., A. Jana, V. De Oliveira, S. C. Muluk, and E. A. Finol. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J. Biomech. Eng. Trans. ASME. 135:10, 2013.CrossRefGoogle Scholar
  43. 43.
    Reeps, C., A. Maier, J. Pelisek, et al. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech. Model. Mechanobiol. 12:717–733, 2013.PubMedCrossRefGoogle Scholar
  44. 44.
    Rissland, P., Y. Alemu, S. Einav, J. Ricotta, and D. Bluestein. Abdominal aortic aneurysm risk of rupture- patient specific FSI simulations using anisotropic model. J. Biomech. Eng. 13:031001–031010, 2009.CrossRefGoogle Scholar
  45. 45.
    Rivlin, R. S. Large elastic deformations of isotropic materials. 1. Fundamental concepts. Philos. Trans. R. Soc. Lond Ser. A 240:459–508, 1948.CrossRefGoogle Scholar
  46. 46.
    Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.PubMedCrossRefGoogle Scholar
  47. 47.
    Rodriguez, J. F., C. Ruiz, M. Doblare, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130:021023, 2008.PubMedCrossRefGoogle Scholar
  48. 48.
    Scotti, C., A. Shkolnik, S. Muluk, and E. Finol. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed. Eng. Online. 4:64, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Shum, J., E. S. DiMartino, A. Goldhammer, et al. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 37:638–648, 2010.PubMedCrossRefGoogle Scholar
  50. 50.
    Shum, J., G. Martufi, E. Di Martino, et al. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39:277–286, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Speelman, L., G. W. Schurink, E. M. Bosboom, et al. The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J. Vasc. Surg. 51:19–26, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Sussman, T., and K. J. Bathe. A finite-element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26:357–409, 1987.CrossRefGoogle Scholar
  53. 53.
    Tierney, A. P., A. Callanan, and T. M. McGloughlin. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk. J. Endovasc. Ther. 19:100–114, 2012.PubMedCrossRefGoogle Scholar
  54. 54.
    Toungara, M., G. Chagnon, and C. Geindreau. Numerical analysis of the wall stress in abdominal aortic aneurysm: influence of the material model near-incompressibility. J. Mech. Med. Biol. 12:1250005, 2012.CrossRefGoogle Scholar
  55. 55.
    Toungara, M., L. Orgeas, C. Geindreau, and L. Bailly. Micromechanical modelling of the arterial wall: Influence of mechanical heterogeneities on the wall stress distribution and the peak wall stress. Comput. Methods Biomech. Biomed. Eng. 16:22–24, 2013.CrossRefGoogle Scholar
  56. 56.
    Truijers, M., J. A. Pol, L. J. Schultzekool, et al. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33:401–407, 2007.PubMedCrossRefGoogle Scholar
  57. 57.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006.PubMedCrossRefGoogle Scholar
  58. 58.
    Vande Geest, J. P., D. H. Wang, S. R. Wisniewski, M. S. Makaroun, and D. A. Vorp. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34:1098–1106, 2006.PubMedCrossRefGoogle Scholar
  59. 59.
    Vengrenyuk, Y., L. Cardoso, and S. Weinbaum. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol. Cell Biomech. 5:37–47, 2008.PubMedGoogle Scholar
  60. 60.
    Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, et al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28:168–176, 2004.PubMedGoogle Scholar
  61. 61.
    Wang, X. H., and X. Y. Li. Computational simulation of aortic aneurysm using fsi method: influence of blood viscosity on aneurismal dynamic behaviors. Comput. Biol. Med. 41:812–821, 2011.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang, X. H., and X. Y. Li. A fluid-structure interaction-based numerical investigation on the evolution of stress, strength and rupture potential of an abdominal aortic aneurysm. Comput. Methods Biomech. Biomed. Eng. 16:1032–1039, 2013.CrossRefGoogle Scholar
  63. 63.
    Washington, C. B., J. Shum, S. C. Muluk, and E. A. Finol. The association of wall mechanics and morphology: a case study of abdominal aortic aneurysm growth. J. Biomech. Eng. Trans. ASME 133:6, 2011.CrossRefGoogle Scholar
  64. 64.
    Wilson, J. S., S. Baek, and J. D. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 9:2047–2058, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Wolters, B. J., M. C. Rutten, G. W. Schurink, et al. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms. Med. Eng. Phys. 27:871–883, 2005.PubMedCrossRefGoogle Scholar
  66. 66.
    Xenos, M., Y. Alemu, D. Zamfir, et al. The effect of angulation in abdominal aortic aneurysms: fluid-structure interaction simulations of idealized geometries. Med. Biol. Eng. Compu. 48:1175–1190, 2010.CrossRefGoogle Scholar
  67. 67.
    Xenos, M., S. H. Rambhia, Y. Alemu, et al. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann. Biomed. Eng. 38:3323–3337, 2010.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang, H., V. O. Kheyfets, and E. A. Finol. Robust infrarenal aortic aneurysm lumen centerline detection for rupture status classification. Med. Eng. Phys. 35:1358–1367, 2013.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Michalis Xenos
    • 1
  • Nicos Labropoulos
    • 3
  • Suraj Rambhia
    • 2
  • Yared Alemu
    • 2
  • Shmuel Einav
    • 2
  • Apostolos Tassiopoulos
    • 3
  • Natzi Sakalihasan
    • 4
  • Danny Bluestein
    • 2
    Email author
  1. 1.Department of MathematicsUniversity of IoanninaIoanninaGreece
  2. 2.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA
  3. 3.Department of SurgeryStony Brook University HospitalStony BrookUSA
  4. 4.Department of SurgeryLiege University HospitalLiègeBelgium

Personalised recommendations