Annals of Biomedical Engineering

, Volume 43, Issue 8, pp 1738–1747 | Cite as

Artery Remodeling Under Axial Twist in Three Days Organ Culture

  • Guo-Liang Wang
  • Yangming Xiao
  • Andrew Voorhees
  • Ying-Xin Qi
  • Zong-Lai Jiang
  • Hai-Chao Han


Arteries often endure axial twist due to body movement and surgical procedures, but how arteries remodel under axial twist remains unclear. The objective of this study was to investigate early stage arterial wall remodeling under axial twist. Porcine carotid arteries were twisted axially and maintained for three days in ex vivo organ culture systems while the pressure and flow remained the same as untwisted controls. Cell proliferation, internal elastic lamina (IEL) fenestrae shape and size, endothelial cell (EC) morphology and orientation, as well as the expression of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and tissue inhibitor of metalloproteinase-2 (TIMP-2) were quantified using immunohistochemistry staining and immunoblotting. Our results demonstrated that cell proliferation in both the intima and media were significantly higher in the twisted arteries compared to the controls. The cell proliferation in the intima increased from 1.33 ± 0.21% to 7.63 ± 1.89%, and in the media from 1.93 ± 0.84% to 8.27 ± 2.92% (p < 0.05). IEL fenestrae total area decreased from 26.07 ± 2.13% to 14.74 ± 0.61% and average size decreased from 169.03 ± 18.85 μm2 to 80.14 ± 1.96 μm2 (p < 0.01), but aspect ratio increased in the twist group from 2.39 ± 0.15 to 2.83 ± 0.29 (p < 0.05). MMP-2 expression significantly increased (p < 0.05) while MMP-9 and TIMP-2 showed no significant difference in the twist group. The ECs in the twisted arteries were significantly elongated compared to the controls after three days. The angle between the major axis of the ECs and blood flow direction under twist was 7.46 ± 2.44 degrees after 3 days organ culture, a decrease from the initial 15.58 ± 1.29 degrees. These results demonstrate that axial twist can stimulate artery remodeling. These findings complement our understanding of arterial wall remodeling under mechanical stress resulting from pressure and flow variations.


Torsion Wall remodeling Matrix metalloproteinase Internal elastic lamina Endothelial cell morphology Cell proliferation Ex vivo Artery Porcine 



This work was supported by National Natural Science Foundation of China through Grant 11229202 and by the National Institutes of Health through Grant R01HL095852. It was also partially supported through HHSN 268201000036C (N01-HV-00244) for the San Antonio Cardiovascular Proteomics Center. The authors thank Granzins Meat Market at New Braunfels, Texas for their help in this work. We also thank Dr. Coleen Witt from the Computational Biology Initiatives at UTSA for her help in this study and thank the RCMI facility center supported by Grant G12MD007591 from the National Institutes of Health.


  1. 1.
    Anwar, M. A., J. Shalhoub, C. S. Lim, M. S. Gohel, and A. H. Davies. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J. Vasc. Res. 49(6):463–478, 2012.PubMedCrossRefGoogle Scholar
  2. 2.
    Bilgin, S. S., M. Topalan, W. Y. Ip, and S. P. Chow. Effect of torsion on microvenous anastomotic patency in a rat model and early thrombolytic phenomenon. Microsurgery 23(4):381–386, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng, C. P., N. M. Wilson, R. L. Hallett, R. J. Herfkens, and C. A. Taylor. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J. Vasc. Interv. Radiol. 17(6):979–987, 2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Chesler, N. C., D. N. Ku, and Z. S. Galis. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am. J. Physiol. Heart Circ. Physiol. 277(5):H2002–H2009, 1999.Google Scholar
  5. 5.
    Chien, S., S. Li, and J. Y. J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31(1):162–169, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91(1):327–387, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Deng, S. X., J. Tomioka, J. C. Debes, and Y. C. Fung. New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. 266(1 Pt 2):H1–H10, 1994.PubMedGoogle Scholar
  8. 8.
    Dobrin, P. B., D. Hodgett, T. Canfield, and R. Mrkvicka. Mechanical determinants of graft kinking. Ann. Vasc. Surg. 15(3):343–349, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Endean, E. D., S. DeJong, and P. B. Dobrin. Effect of twist on flow and patency of vein grafts. J. Vasc. Surg. 9(5):651–655, 1989.PubMedCrossRefGoogle Scholar
  10. 10.
    Flaherty, J. T., J. E. Pierce, V. J. Ferrans, D. J. Patel, W. K. Tucker, and D. L. Fry. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. 30(1):23–33, 1972.PubMedCrossRefGoogle Scholar
  11. 11.
    Fuster, J. J., P. Fernandez, H. Gonzalez-Navarro, C. Silvestre, Y. N. Nabah, and V. Andres. Control of cell proliferation in atherosclerosis: insights from animal models and human studies. Cardiovasc. Res. 86(2):254–264, 2010.PubMedCrossRefGoogle Scholar
  12. 12.
    Galis, Z. S., and J. J. Khatri. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90(3):251–262, 2002.PubMedGoogle Scholar
  13. 13.
    Garcia, J. R., S. D. Lamm, and H. C. Han. Twist buckling behavior of arteries. Biomech. Model. Mechanobiol. 12(5):915–927, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gleason, R. L., E. Wilson, and J. D. Humphrey. Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension. J. Biomech. 40(4):766–776, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Godin, D., E. Ivan, C. Johnson, R. Magid, and Z. S. Galis. Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation 102(23):2861–2866, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Guo, Z. Y., Z. Q. Yan, L. Bai, M. L. Zhang, and Z. L. Jiang. Flow shear stress affects macromolecular accumulation through modulation of internal elastic lamina fenestrae. Clin. Biomech. 23:S104–S111, 2008.CrossRefGoogle Scholar
  17. 17.
    Han, H.-C., S. Marita, and D. N. Ku. Changes of opening angle in hypertensive and hypotensive arteries in 3-day organ culture. J. Biomech. 39(13):2410–2418, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Han, H. C., and D. N. Ku. Contractile responses in arteries subjected to hypertensive pressure in seven-day organ culture. Ann. Biomed. Eng. 29(6):467–475, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Han, H. C., D. N. Ku, and R. P. Vito. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31(4):403–411, 2003.PubMedCrossRefGoogle Scholar
  20. 20.
    Han, H. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 49(3):185–197, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Han, H. C., J. K. Chesnutt, J. R. Garcia, Q. Liu, and Q. Wen. Artery buckling: new phenotypes, models, and applications. Ann. Biomed. Eng. 41(7):1399–1410, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hayman, D. M., Y. Xiao, Q. Yao, Z. Jiang, M. L. Lindsey, and H.-C. Han. Alterations in pulse pressure affect artery function. Cell. Mol. Bioeng. 5(4):474–487, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hirata, A., P. Baluk, T. Fujiwara, and D. M. Mcdonald. Location of focal silver staining at endothelial gaps in inflamed venules examined by scanning electron-microscopy. Am. J. Physiol. Lung. Cell Mol. Physiol. 269(3):L403–L418, 1995.Google Scholar
  24. 24.
    Izquierdo, R., P. B. Dobrin, K. Fu, F. Park, and G. Galante. The effect of twist on microvascular anastomotic patency and angiographic luminal dimensions. J. Surg. Res. 78(1):60–63, 1998.PubMedCrossRefGoogle Scholar
  25. 25.
    Jackson, Z. S., A. I. Gotlieb, and B. L. Langille. Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8):918–925, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Kandalam, V., R. Basu, L. Moore, D. Fan, X. Wang, D. M. Jaworski, G. Y. Oudit, and Z. Kassiri. Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress. Circulation 124(19):2094–2105, 2011.PubMedCrossRefGoogle Scholar
  27. 27.
    Kassiri, Z., and R. Khokha. Myocardial extra-cellular matrix and its regulation by metalloproteinases and their inhibitors. Thromb. Haemost. 93(2):212–219, 2005.PubMedGoogle Scholar
  28. 28.
    Klein, A. J., S. J. Chen, J. C. Messenger, A. R. Hansgen, M. E. Plomondon, J. D. Carroll, and I. P. Casserly. Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement. Catheter. Cardiovasc. Interv. 74(5):787–798, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Langille, B. L., J. J. Graham, D. Kim, and A. I. Gotlieb. Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler. Thromb. 11(6):1814–1820, 1991.PubMedCrossRefGoogle Scholar
  30. 30.
    Langille, B. L. Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J. Cardiovasc. Pharmacol. 21(Suppl 1):S11–S17, 1993.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee, A. Y., B. Y. Han, S. D. Lamm, C. A. Fierro, and H. C. Han. Effects of elastin degradation and surrounding matrix support on artery stability. Am. J. Physiol. Heart Circ. Physiol. 302(4):H873–H884, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lee, Y. U., D. Drury-Stewart, R. P. Vito, and H. C. Han. Morphologic adaptation of arterial endothelial cells to longitudinal stretch in organ culture. J. Biomech. 41(15):3274–3277, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lu, X., J. Yang, J. B. Zhao, H. Gregersen, and G. S. Kassab. Shear modulus of porcine coronary artery: contributions of media and adventitia. Am. J. Physiol. Heart Circ. Physiol. 285(5):H1966–H1975, 2003.PubMedCrossRefGoogle Scholar
  34. 34.
    Macchiarelli, Arterial repair after microvascular anastomosis. Acta Anat (Basel) 1991. 140.Google Scholar
  35. 35.
    Nerem, R. M. Tissue engineering a blood vessel substitute: the role of biomechanics. Yonsei Med. J. 41(6):735–739, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Nichol, J. W., M. Petko, R. J. Myung, J. W. Gaynor, and K. J. Gooch. Hemodynamic conditions alter axial and circumferential remodeling of arteries engineered ex vivo. Ann. Biomed. Eng. 33(6):721–732, 2005.PubMedCrossRefGoogle Scholar
  37. 37.
    Ramaiah, V. G., C. S. Thompson, S. Shafique, J. A. Rodriguez, R. Ravi, L. DiMugno, and E. B. Diethrich. Crossing the limbs: a useful adjunct for successful deployment of the AneuRx stent-graft. J. Endovasc. Ther. 9(5):583–586, 2002.PubMedCrossRefGoogle Scholar
  38. 38.
    Rizzoni, D., M. L. Muiesan, E. Porteri, C. De Ciuceis, G. E. Boari, M. Salvetti, A. Paini, and E. A. Rosei. Vascular remodeling, macro- and microvessels: therapeutic implications. Blood Press. 18(5):242–246, 2009.PubMedCrossRefGoogle Scholar
  39. 39.
    Salgarello, M., P. Lahoud, G. Selvaggi, S. Gentileschi, M. Sturla, and E. Farallo. The effect of twisting on microanastomotic patency of arteries and veins in a rat model. Ann. Plast. Surg. 47(6):643–646, 2001.PubMedCrossRefGoogle Scholar
  40. 40.
    Sarkar, S., H. J. Salacinski, G. Hamilton, and A. M. Seifalian. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31(6):627–636, 2006.PubMedCrossRefGoogle Scholar
  41. 41.
    Selvaggi, G., M. Salgarello, E. Farallo, S. Anicic, and L. Formaggia. Effect of torsion on microvenous anastomotic patency in rat model and early thrombolytic phenomenon. Microsurgery 24(5):416–417, 2004.PubMedCrossRefGoogle Scholar
  42. 42.
    Strongin, A. Y., I. Collier, G. Bannikov, B. L. Marmer, G. A. Grant, and G. I. Goldberg. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270(10):5331–5338, 1995.PubMedCrossRefGoogle Scholar
  43. 43.
    Tada, S., and J. M. Tarbell. Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study. Am. J. Physiol. Heart Circ. Physiol. 287(2):H905–H913, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Epps, J. S., and D. A. Vorp. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion. J. Biomech. Eng. Trans. Asme 130(5):051001–051008, 2008.CrossRefGoogle Scholar
  45. 45.
    Voorhees, A. P., and H. C. Han. A model to determine the effect of collagen fiber alignment on heart function post myocardial infarction. Theor. Biol. Med. Model 11:6, 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Vos, A. W. F., M. A. M. Linsen, J. T. Marcus, J. C. van den Berg, J. A. Vos, J. A. Rauwerda, and W. Wisselink. Carotid artery dynamics during head movements: A reason for concern with regard to carotid stenting. J. Endovasc. Ther. 10(5):862–869, 2003.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang, J. H. C., P. Goldschmidt-Clermont, J. Wille, and F. C. P. Yin. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34(12):1563–1572, 2001.PubMedCrossRefGoogle Scholar
  48. 48.
    Wong, C. H., F. Cui, B. K. Tan, Z. Liu, H. P. Lee, C. Lu, C. L. Foo, and C. Song. Nonlinear finite element simulations to elucidate the determinants of perforator patency in propeller flaps. Ann. Plast. Surg. 59(6):672–678, 2007.PubMedCrossRefGoogle Scholar
  49. 49.
    Xiao, Y., D. Hayman, S. S. Khalafvand, M. L. Lindsey, and H. C. Han. Artery buckling stimulates cell proliferation and NF-kappaB signaling. Am. J. Physiol. Heart Circ. Physiol. 307:H542–H551, 2014.PubMedCrossRefGoogle Scholar
  50. 50.
    Yao, Q., D. M. Hayman, Q. Dai, M. L. Lindsey, and H. C. Han. Alterations of pulse pressure stimulate arterial wall matrix remodeling. J. Biomech. Eng. 131(10):101011, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Zhao, S., A. Suciu, T. Ziegler, J. E. Moore, Jr., E. Burki, J. J. Meister, and H. R. Brunner. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler. Thromb. Vasc. Biol. 15(10):1781–1786, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Guo-Liang Wang
    • 1
    • 2
  • Yangming Xiao
    • 2
  • Andrew Voorhees
    • 2
  • Ying-Xin Qi
    • 1
  • Zong-Lai Jiang
    • 1
  • Hai-Chao Han
    • 1
    • 2
  1. 1.Institute of Mechanobiology and Medical Engineering, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Mechanical EngineeringUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations