Annals of Biomedical Engineering

, Volume 43, Issue 4, pp 833–843 | Cite as

Emerging Trends in Heart Valve Engineering: Part I. Solutions for Future

  • Arash KheradvarEmail author
  • Elliott M. Groves
  • Lakshmi P. Dasi
  • S. Hamed Alavi
  • Robert Tranquillo
  • K. Jane Grande-Allen
  • Craig A. Simmons
  • Boyce Griffith
  • Ahmad Falahatpisheh
  • Craig J. Goergen
  • Mohammad R. K. Mofrad
  • Frank Baaijens
  • Stephen H. Little
  • Suncica Canic


As the first section of a multi-part review series, this section provides an overview of the ongoing research and development aimed at fabricating novel heart valve replacements beyond what is currently available for patients. Here we discuss heart valve replacement options that involve a biological component or process for creation, either in vitro or in vivo (tissue-engineered heart valves), and heart valves that are fabricated from polymeric material that are considered permanent inert materials that may suffice for adults where growth is not required. Polymeric materials provide opportunities for cost-effective heart valves that can be more easily manufactured and can be easily integrated with artificial heart and ventricular assist device technologies. Tissue engineered heart valves show promise as a regenerative patient specific model that could be the future of all valve replacement. Because tissue-engineered heart valves depend on cells for their creation, understanding how cells sense and respond to chemical and physical stimuli in their microenvironment is critical and therefore, is also reviewed.


Heart valve engineering Tissue engineered heart valves Polymeric heart valves 



This review article was prepared after the Mathematics Guiding Bioartificial Heart Valve Design meeting held at the Ohio State University, October 28–31, 2013. The authors would like to acknowledge the Mathematical Biosciences Institute and its grant from National Science Foundation (DMS 0931642) that facilitated the meeting.


  1. 1.
    Akutsu, T., B. Dreyer, and W. J. Kolff. Polyurethane artificial heart valves in animals. J. Appl. Physiol. 14:1045–1048, 1959.PubMedGoogle Scholar
  2. 2.
    Alavi, S. H. Towards development of hybrid engineered heart valves. PhD Thesis. 2014.Google Scholar
  3. 3.
    Alavi, S. H., and A. Kheradvar. Metal mesh scaffold for tissue engineering of membranes. Tissue Eng. Part C 18:293–301, 2012.CrossRefGoogle Scholar
  4. 4.
    Alavi, S. H., W. F. Liu, and A. Kheradvar. Inflammatory response assessment of a hybrid tissue-engineered heart valve leaflet. Ann. Biomed. Eng. 41:316–326, 2013.PubMedCrossRefGoogle Scholar
  5. 5.
    Ando, M., and Y. Takahashi. Ten-year experience with handmade trileaflet polytetrafluoroethylene valved conduit used for pulmonary reconstruction. J. Thorac. Cardiovasc. Surg. 137:124–131, 2009.PubMedCrossRefGoogle Scholar
  6. 6.
    Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655–1665, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. 296:H756–H764, 2009.Google Scholar
  8. 8.
    Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am. J. Pathol. 177:49–57, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Benton, J. A., C. A. DeForest, V. Vivekanandan, and K. S. Anseth. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15:3221–3230, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Benton, J. A., B. D. Fairbanks, and K. S. Anseth. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30:6593–6603, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Benton, J. A., H. B. Kern, and K. S. Anseth. Substrate properties influence calcification in valvular interstitial cell culture. J. Heart Valve Dis. 17:689–699, 2008.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bernacca, G. M., T. G. Mackay, M. J. Gulbransen, A. W. Donn, and D. J. Wheatley. Polyurethane heart valve durability: effects of leaflet thickness and material. Int. J. Artif. Organs 20:327–331, 1997.PubMedGoogle Scholar
  13. 13.
    Bernacca, G. M., T. G. Mackay, R. Wilkinson, and D. J. Wheatley. Calcification and fatigue failure in a polyurethane heart-valve. Biomaterials 16:279–285, 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Bernacca, G. M., T. G. Mackay, R. Wilkinson, and D. J. Wheatley. Polyurethane heart valves: fatigue failure, calcification, and polyurethane structure. J. Biomed. Mater. Res. 34:371–379, 1997.PubMedCrossRefGoogle Scholar
  15. 15.
    Bernacca, G. M., B. O’Connor, D. F. Williams, and D. J. Wheatley. Hydrodynamic function of polyurethane prosthetic heart valves: influences of young’s modulus and leaflet thickness. Biomaterials 23:45–50, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Bernacca, G. M., I. Straub, and D. J. Wheatley. Mechanical and morphological study of biostable polyurethane heart valve leaflets explanted from sheep. J. Biomed. Mater. Res. 61:138–145, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Bezuidenhout, D., and P. Zilla. Flexible leaflet polymeric heart valves. In: Cardiovascular and Cardiac Therapeutic Devices, edited by F. Thomas. New York: Springer 2014, pp. 93–130.Google Scholar
  18. 18.
    Bouten, C., P. Dankers, A. Driessen-Mol, S. Pedron, A. Brizard, and F. Baaijens. Substrates for cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 63:221–241, 2011.PubMedCrossRefGoogle Scholar
  19. 19.
    Braunwal, N. S., and A. G. Morrow. A late evaluation of flexible teflon prostheses utilized for total aortic valve replacement—postoperative clinical hemodynamic and pathological assessments. J. Thorac. Cardiovasc. Surg. 49:485–496, 1965.Google Scholar
  20. 20.
    Breuer, C. K., B. A. Mettler, T. Anthony, V. L. Sales, F. J. Schoen, and J. E. Mayer. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng. 10:1725–1736, 2004.PubMedCrossRefGoogle Scholar
  21. 21.
    Butcher, J. T., G. J. Mahler, and L. A. Hockaday. Aortic valve disease and treatment: the need for naturally engineered solutions. Adv. Drug Deliv. Rev. 63:242–268, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Butterfield, M., D. J. Wheatley, D. F. Williams, and J. Fisher. A new design for polyurethane heart valves. J. Heart Valve Dis. 10:105–110, 2001.PubMedGoogle Scholar
  23. 23.
    Carapetis, J. R., A. C. Steer, E. K. Mulholland, and M. Weber. The global burden of group a streptococcal diseases. Lancet. Infect. Dis. 5:685–694, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Chaffin, K. A., A. J. Buckalew, J. L. Schley, X. Chen, M. Jolly, J. A. Alkatout, J. P. Miller, D. F. Untereker, M. A. Hillmyer, and F. S. Bates. Influence of water on the structure and properties of PDMS-containing multiblock polyurethanes. Macromolecules 45:9110–9120, 2012.CrossRefGoogle Scholar
  25. 25.
    Chen, J. H., W. L. Chen, K. L. Sider, C. Y. Yip, and C. A. Simmons. {beta}-Catenin mediates mechanically regulated, transforming growth factor-{beta}1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler. Thromb. Vasc. Biol. 31:590–597, 2011.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen, W. L. K, K. L. Sider, C. A. Simmons. Matrix mechanical and biochemical regulation of mouse multipotent stromal cell (MSC) lineage specification. PhD Thesis, 2014.Google Scholar
  27. 27.
    Chen, J. H., and C. A. Simmons. Cell–matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ. Res. 108:1510–1524, 2011.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen, J. H., C. Y. Yip, E. D. Sone, and C. A. Simmons. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am. J. Pathol. 174:1109–1119, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Clift, S. E., and J. Fisher. Finite element stress analysis of a new design of synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 210:267–272, 1996.PubMedCrossRefGoogle Scholar
  30. 30.
    Colas, A., and J. Curtis. Silicone biomaterials: History and chemistry. In: Biomaterials Science: An Introduction to Materials in Medicine, edited by B. D. Rattner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons. San Diego: Elsevier, 2004.Google Scholar
  31. 31.
    Coury, A., P. Slaikey, P. Cahalan, and K. Stokes. Medical applications of implantable polyurethanes: current issues. Progress Rubber Plast. Technol. 3:24–37, 1987.Google Scholar
  32. 32.
    Cox, J. L., N. Ad, K. Myers, M. Gharib, and R. C. Quijano. Tubular heart valves: a new tissue prosthesis design–preclinical evaluation of the 3f aortic bioprosthesis. J. Thorac. Cardiovasc. Surg. 130:520–527, 2005.PubMedCrossRefGoogle Scholar
  33. 33.
    Cushing, M. C., J. T. Liao, M. P. Jaeggli, and K. S. Anseth. Material-based regulation of the myofibroblast phenotype. Biomaterials 28:3378–3387, 2007.PubMedCrossRefGoogle Scholar
  34. 34.
    Daebritz, S. H., B. Fausten, B. Hermanns, A. Franke, J. Schroeder, J. Groetzner, R. Autschbach, B. J. Messmer, and J. S. Sachweh. New flexible polymeric heart valve prostheses for the mitral and aortic positions. Heart Surgery Forum 7:E525–E532, 2004.PubMedCrossRefGoogle Scholar
  35. 35.
    Daebritz, S. H., B. Fausten, B. Hermanns, J. Schroeder, J. Groetzner, R. Autschbach, B. J. Messmer, and J. S. Sachweh. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position. Eur. J. Cardiothorac. Surg. 25:946–952, 2004.PubMedCrossRefGoogle Scholar
  36. 36.
    Daebritz, S. H., J. S. Sachweh, B. Hermanns, B. Fausten, A. Franke, J. Groetzner, B. Klosterhalfen, and B. J. Messmer. Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 108:134–139, 2003.CrossRefGoogle Scholar
  37. 37.
    d’Arcy, J. L., B. D. Prendergast, J. B. Chambers, S. G. Ray, and B. Bridgewater. Valvular heart disease: the next cardiac epidemic. Heart 97:91–93, 2011.PubMedCrossRefGoogle Scholar
  38. 38.
    Dijkman, P. E., A. Driessen-Mol, L. Frese, S. P. Hoerstrup, and F. P. T. Baaijens. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33:4545–4554, 2012.PubMedCrossRefGoogle Scholar
  39. 39.
    Driessen-Mol, A., M. Y. Emmert, P. E. Dijkman, L. Frese, B. Sanders, B. Weber, N. Cesarovic, M. Sidler, J. Leenders, R. Jenni, J. Grünenfelder, V. Falk, F. P. T. Baaijens, and S. P. Hoerstrup. Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J. Am. Coll. Cardiol. 63:1320–1329, 2014.PubMedCrossRefGoogle Scholar
  40. 40.
    Durst, C. A., M. P. Cuchiara, E. G. Mansfield, J. L. West, and K. J. Grande-Allen. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 7:2467–2476, 2011.PubMedCrossRefGoogle Scholar
  41. 41.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.PubMedCrossRefGoogle Scholar
  42. 42.
    Fung, Y. C. Biomechanics: Mechanical properties of living tissues. Berlin: Springer, 1993.CrossRefGoogle Scholar
  43. 43.
    Ghanbari, H., A. G. Kidane, G. Burriesci, B. Ramesh, A. Darbyshire, and A. M. Seifalian. The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomater. 6:4249–4260, 2010.PubMedCrossRefGoogle Scholar
  44. 44.
    Ghista, D. N., and H. Reul. Optimal prosthetic aortic leaflet valve—design parametric and longevity analyses—development of avcothane-51 leaflet valve based on optimum design analysis. J. Biomech. 10:313–324, 1977.PubMedCrossRefGoogle Scholar
  45. 45.
    Gould, S. T., N. J. Darling, and K. S. Anseth. Small peptide functionalized thiol-ene hydrogels as culture substrates for understanding valvular interstitial cell activation and de novo tissue deposition. Acta Biomater. 8:3201–3209, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Gould, S. T., S. Srigunapalan, C. A. Simmons, and K. S. Anseth. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ. Res. 113:186–197, 2013.PubMedCrossRefGoogle Scholar
  47. 47.
    Grande-Allen, K. J., A. Calabro, V. Gupta, T. N. Wight, V. C. Hascall, and I. Vesely. Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology 14:621–633, 2004.PubMedCrossRefGoogle Scholar
  48. 48.
    Gu, X., and K. S. Masters. Regulation of valvular interstitial cell calcification by adhesive peptide sequences. J. Biomed. Mater. Res. 93:1620–1630, 2010.Google Scholar
  49. 49.
    Hilbert, S. L., V. J. Ferrans, Y. Tomita, E. E. Eidbo, and M. Jones. Evaluation of explanted polyurethane trileaflet cardiac-valve prostheses. J. Thorac. Cardiovasc. Surg. 94:419–429, 1987.PubMedGoogle Scholar
  50. 50.
    Hinton, R. B., and K. E. Yutzey. Heart valve structure and function in development and disease. Annu. Rev. Physiol. 73:29–46, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr. Functional living trileaflet heart valves grown in vitro. Circulation 102:III-44-49, 2000.CrossRefGoogle Scholar
  52. 52.
    James, S. P., R. K. Oldinski, M. Zhang, and H. Schwartz. Chapter 18: UHMWPE/hyaluronan microcomposite biomaterials. In: UHMWPE Handbook, edited by S. Kurtz. Amsterdam: Elsevier, 2009.Google Scholar
  53. 53.
    Jansen, J., and H. Reul. A synthetic 3-leaflet valve. J. Med. Eng. Technol. 16:27–33, 1992.PubMedCrossRefGoogle Scholar
  54. 54.
    Jansen, J., S. Willeke, B. Reiners, P. Harbott, H. Reul, and G. Rau. New j-3 flexible-leaflet polyurethane heart-valve prosthesis with improved hydrodynamic performance. Int. J. Artif. Organs 14:655–660, 1991.PubMedGoogle Scholar
  55. 55.
    Kidane, A. G., G. Burriesci, M. Edirisinghe, H. Ghanbari, P. Bonhoeffer, and A. M. Seifalian. A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater. 5:2409–2417, 2009.PubMedCrossRefGoogle Scholar
  56. 56.
    Kloxin, A. M., J. A. Benton, and K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31:1–8, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Krishnamurthy, G., A. Itoh, J. C. Swanson, W. Bothe, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels, Jr. Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J. Biomech. 42:2697–2701, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Krishnamurthy, G., A. Itoh, J. C. Swanson, D. C. Miller, and N. B. Ingels, Jr. Transient stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 298:H2221–H2225, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Leat, M. E., and J. Fisher. The influence of manufacturing methods on the function and performance of a synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 209:65–69, 1995.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee, H. J., J.-S. Lee, T. Chansakul, C. Yu, J. H. Elisseeff, and S. M. Yu. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 27:5268–5276, 2006.PubMedCrossRefGoogle Scholar
  61. 61.
    Mackay, T. G., D. J. Wheatley, G. M. Bernacca, A. C. Fisher, and C. S. Hindle. New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials 17:1857–1863, 1996.PubMedCrossRefGoogle Scholar
  62. 62.
    Mann, B. K., A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2001.PubMedCrossRefGoogle Scholar
  63. 63.
    Masters, K. S., D. N. Shah, L. A. Leinwand, and K. S. Anseth. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26:2517–2525, 2005.PubMedCrossRefGoogle Scholar
  64. 64.
    Masters, K. S., D. N. Shah, G. Walker, L. A. Leinwand, and K. S. Anseth. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J. Biomed. Mater. Res. Part A 71A:172–180, 2004.CrossRefGoogle Scholar
  65. 65.
    Mendelson, K., and F. Schoen. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34:1799–1819, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Merryman, W. D., H. D. Lukoff, R. A. Long, G. C. Engelmayr, Jr., R. A. Hopkins, and M. S. Sacks. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc. Pathol. 16:268–276, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Mewissen, M. W. Primary nitinol stenting for femoropopliteal disease. J. Endovasc. Ther. 16:II63–II81, 2009.PubMedCrossRefGoogle Scholar
  68. 68.
    Mohri, H., E. A. Hessel, R. J. Nelson, H. N. Anderson, D. H. Dillard, and K. A. Merendin. Design and durability test of silastic trileaflet aortic-valve prostheses. J. Thorac. Cardiovasc. Surg. 65:576–582, 1973.Google Scholar
  69. 69.
    Moraes, C., M. Likhitpanichkul, C. J. Lam, B. M. Beca, Y. Sun, and C. A. Simmons. Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr. Biol. Quant. Biosci. Nano Macro 5:673–680, 2013.Google Scholar
  70. 70.
    Muller, W. H., W. D. Warren, J. F. Dammann, J. R. Beckwith, and J. E. Wood. Surgical relief of aortic insufficiency by direct operation on the aortic valve. Circulation 21:587–597, 1960.PubMedCrossRefGoogle Scholar
  71. 71.
    Nistal, F., V. Garciamartinez, E. Arbe, D. Fernandez, E. Artinano, F. Mazorra, and I. Gallo. Invivo experimental assessment of polytetrafluoroethylene trileaflet heart-valve prosthesis. J. Thorac. Cardiovasc. Surg. 99:1074–1081, 1990.PubMedGoogle Scholar
  72. 72.
    Pho, M., W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am. J. Physiol. 294:H1767–H1778, 2008.Google Scholar
  73. 73.
    Plimpton, S. R., W. Liu, and A. Kheradvar. Immunological and phenotypic considerations in supplementing cardiac biomaterials with cells. In: Biomaterials for Cardiac Regeneration, edited by E. J. Suuronen, and M. Ruel. Berlin: Springer International Publishing, 2015, pp. 239–273.CrossRefGoogle Scholar
  74. 74.
    Prawel, D. A., H. Dean, M. Forleo, N. Lewis, J. Gangwish, K. C. Popat, L. P. Dasi, and S. P. James. Hemocompatibility and hemodynamics of novel hyaluronan–polyethylene materials for flexible heart valve leaflets. Cardiovasc. Eng. Technol. 5:70–81, 2014.Google Scholar
  75. 75.
    Rabkin, E., and F. J. Schoen. Cardiovascular tissue engineering. Cardiovasc. Pathol. 11:305–317, 2002.PubMedCrossRefGoogle Scholar
  76. 76.
    Rabkin-Aikawa, E., J. E. Mayer, Jr., and F. J. Schoen. Heart valve regeneration. Adv. Biochem. Eng. Biotechnol. 94:141–179, 2005.PubMedGoogle Scholar
  77. 77.
    Rahmani, B., S. Tzamtzis, H. Ghanbari, G. Burriesci, and A. M. Seifalian. Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. J. Biomech. 45:1205–1211, 2012.PubMedCrossRefGoogle Scholar
  78. 78.
    Rausch, M. K., N. Famaey, T. O. B. Shultz, W. Bothe, D. C. Miller, and E. Kuhl. Mechanics of the mitral valve. Biomech. Model. Mechanobiol. 12:1053–1071, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Rodriguez, K. J., and K. S. Masters. Regulation of valvular interstitial cell calcification by components of the extracellular matrix. J. Biomed. Mater. Res. 90:1043–1053, 2009.CrossRefGoogle Scholar
  80. 80.
    Roe, B. B. Late follow-up studies on flexible leaflet prosthetic valves. J. Thorac. Cardiovasc. Surg. 58:59–61, 1969.PubMedGoogle Scholar
  81. 81.
    Roe, B. B., M. F. Burke, and H. Zehner. The subcoronary implantation of a flexible tricuspid aortic valve prosthesis. J. Thorac. Cardiovasc. Surg. 40:561–567, 1960.PubMedGoogle Scholar
  82. 82.
    Roe, B. B., P. B. Kelly, J. L. Myers, and D. W. Moore. Tricuspid leaflet aortic valve prosthesis. Circulation 33:I124–I130, 1966.PubMedCrossRefGoogle Scholar
  83. 83.
    Roe, B. B., and D. W. Moore. Design and fabrication of prosthetic valves. Exp. Med. Surg. 16:177–182, 1958.PubMedGoogle Scholar
  84. 84.
    Roe, B., J. Owsley, and P. Boudoures. Experimental results with a prosthetic aortic valve. J. Thorac. Surg. 36:563, 1958.PubMedGoogle Scholar
  85. 85.
    Sachweh, J. S., and S. H. Daebritz. Novel “biomechanical” polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients? ASAIO J. 52:575–580, 2006.PubMedGoogle Scholar
  86. 86.
    Sacks, M. S. Biaxial mechanical evaluation of planar biological materials. J. Elast. 61:199–246, 2000.CrossRefGoogle Scholar
  87. 87.
    Sacks, M. S., F. J. Schoen, and J. E. Mayer. Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11:289–313, 2009.PubMedCrossRefGoogle Scholar
  88. 88.
    Sacks, M. S., and A. P. Yoganathan. Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B 362:1369–1391, 2007.CrossRefGoogle Scholar
  89. 89.
    Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, M. Rissanen, T. Deichmann, B. Odermatt, and B. Weber. Minimally-invasive implantation of living tissue engineered heart valves comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56:510–520, 2010.PubMedCrossRefGoogle Scholar
  90. 90.
    Schoen, F. J. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118:1864–1880, 2008.PubMedCrossRefGoogle Scholar
  91. 91.
    Shah, D. N., S. M. Recktenwall-Work, and K. S. Anseth. The effect of bioactive hydrogels on the secretion of extracellular matrix molecules by valvular interstitial cells. Biomaterials 29:2060–2072, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Shinoka, T., C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513–S516, 1995.PubMedCrossRefGoogle Scholar
  93. 93.
    Shinoka, T., P. X. Ma, D. Shum-Tim, C. K. Breuer, R. A. Cusick, G. Zund, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:164–168, 1996.Google Scholar
  94. 94.
    Stephens, E. H., C. A. Durst, J. L. West, and K. J. Grande-Allen. Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region. Acta Biomater. 7:75–82, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Sutherland, F. W., T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, G. A. Garcia, D. L. McLellan, G. C. Engelmayr, and M. S. Sacks. From stem cells to viable autologous semilunar heart valve. Circulation 111:2783–2791, 2005.PubMedCrossRefGoogle Scholar
  96. 96.
    Syedain, Z., L. A. Meier, M. T. Lahti, S. Johnson, and R. T. Tranquillo. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng. Part A. 20:1726–1734, 2014.Google Scholar
  97. 97.
    Syedain, Z. H., L. A. Meier, J. M. Reimer, and R. T. Tranquillo. Tubular heart valves from decellularized engineered tissue. Ann. Biomed. Eng. 41:2645–2654, 2013.PubMedCrossRefGoogle Scholar
  98. 98.
    Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30:4078–4084, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Tseng, H., M. Cuchiara, C. Durst, M. Cuchiara, C. Lin, J. West, and K. J. Grande-Allen. Fabrication and mechanical evaluation of anatomically-inspired quasilaminate hydrogel structures with layer-specific formulations. Ann. Biomed. Eng. 41:398–407, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Tseng, H., D. S. Puperi, E. J. Kim, S. Ayoub, J. V. Shah, M. L. Cuchiara, J. L. West, and K. J. Grande-Allen. Anisotropic poly(ethylene glycol)/polycaprolactone (PEG/PCL) hydrogel-fiber composites for heart valve tissue engineering. Tissue Eng. Part A. 20:2634–2645, 2014.Google Scholar
  101. 101.
    Vesely, I. Heart valve tissue engineering. Circ. Res. 97:743–755, 2005.PubMedCrossRefGoogle Scholar
  102. 102.
    Vesely, I., and D. Boughner. Analysis of the bending behavior of porcine xenograft leaflets and of natural aortic-valve material—bending stiffness, neutral axis and shear measurements. J. Biomech. 22:655, 1989.PubMedCrossRefGoogle Scholar
  103. 103.
    Weber, B., P. E. Dijkman, J. Scherman, B. Sanders, M. Y. Emmert, J. Grünenfelder, R. Verbeek, M. Bracher, M. Black, T. Franz, J. Kortsmit, P. Modregger, S. Peter, M. Stampanoni, J. Robert, D. Kehl, M. van Doeselaar, M. Schweiger, C. E. Brokopp, T. Wälchli, V. Falk, P. Zilla, A. Driessen-Mol, F. P. T. Baaijens, and S. P. Hoerstrup. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 34:7269–7280, 2013.PubMedCrossRefGoogle Scholar
  104. 104.
    Wheatley, D. J., G. M. Bernacca, M. M. Tolland, B. O’Connor, J. Fisher, and D. F. Williams. Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs 24:95–101, 2001.PubMedGoogle Scholar
  105. 105.
    Wheatley, D. J., L. Raco, G. M. Bernacca, I. Sim, P. R. Belcher, and J. S. Boyd. Polyurethane: material for the next generation of heart valve prostheses? Eur. J. Cardiothorac. Surg. 17:440–447, 2000.PubMedCrossRefGoogle Scholar
  106. 106.
    Wisman, C. B., W. S. Pierce, J. H. Donachy, W. E. Pae, J. L. Myers, and G. A. Prophet. A polyurethane trileaflet cardiac-valve prosthesis—invitro and invivo studies. Trans. Am. Soc. Artif. Internal Organs 28:164–168, 1982.Google Scholar
  107. 107.
    Yacoub, M. H., and J. J. Takkenberg. Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2:60–61, 2005.PubMedCrossRefGoogle Scholar
  108. 108.
    Yip, C. Y., J. H. Chen, R. Zhao, and C. A. Simmons. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29:936–942, 2009.PubMedCrossRefGoogle Scholar
  109. 109.
    Yip, C. Y., and C. A. Simmons. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc. Pathol. 20:177–182, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Arash Kheradvar
    • 1
    • 2
    Email author
  • Elliott M. Groves
    • 1
    • 2
  • Lakshmi P. Dasi
    • 3
  • S. Hamed Alavi
    • 1
  • Robert Tranquillo
    • 4
  • K. Jane Grande-Allen
    • 5
  • Craig A. Simmons
    • 6
    • 7
  • Boyce Griffith
    • 8
    • 9
  • Ahmad Falahatpisheh
    • 1
  • Craig J. Goergen
    • 10
  • Mohammad R. K. Mofrad
    • 11
  • Frank Baaijens
    • 12
  • Stephen H. Little
    • 13
  • Suncica Canic
    • 14
  1. 1.Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of California, IrvineIrvineUSA
  2. 2.Department of Internal Medicine, Division of CardiologyUniversity of California, Irvine School of MedicineIrvineUSA
  3. 3.Department of Mechanical Engineering, School of Biomedical EngineeringColorado State UniversityFort CollinsUSA
  4. 4.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  5. 5.Department of BioengineeringRice UniversityHoustonUSA
  6. 6.Department of Mechanical & Industrial EngineeringUniversity of TorontoTorontoCanada
  7. 7.Institute of Biomaterials & Biomedical EngineeringUniversity of TorontoTorontoCanada
  8. 8.Department of Mathematics, Center for Interdisciplinary Applied MathematicsUniversity of North Carolina at Chapel HillChapel HillUSA
  9. 9.McAllister Heart InstituteUniversity of North Carolina at Chapel Hill School of MedicineChapel HillUSA
  10. 10.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  11. 11.Department of Bioengineering and Mechanical EngineeringUniversity of California, BerkeleyBerkeleyUSA
  12. 12.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  13. 13.Houston Methodist DeBakey Heart & Vascular CenterHoustonUSA
  14. 14.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations