Annals of Biomedical Engineering

, Volume 43, Issue 8, pp 1896–1906 | Cite as

Measurement of Hybrid III Head Impact Kinematics Using an Accelerometer and Gyroscope System in Ice Hockey Helmets

  • Mari A. Allison
  • Yun Seok Kang
  • Matthew R. Maltese
  • John H. BolteIV
  • Kristy B. ArbogastEmail author


Helmet-based instrumentation is used to study the biomechanics of concussion. The most extensively used systems estimate rotational acceleration from linear acceleration, but new instrumentation measures rotational velocity using gyroscopes, potentially reducing error. This study compared kinematics from an accelerometer and gyroscope-containing system to reference measures. A Hybrid III (HIII) adult male anthropometric test device head and neck was fit with two helmet brands, each instrumented with gForce Tracker (GFT) sensor systems in four locations. Helmets were impacted at various speeds and directions. Regression relationships between GFT-measured and reference peak kinematics were quantified, and influence of impact direction, sensor location, and helmet brand was evaluated. The relationship between the sensor output and the reference acceleration/velocity experienced by the head was strong. Coefficients of determination for data stratified by individual impact directions ranged from 0.77 to 0.99 for peak linear acceleration and from 0.78 to 1.0 for peak rotational velocity. For the data from all impact directions combined, coefficients of determination ranged from 0.60 to 0.80 for peak resultant linear acceleration and 0.83 to 0.91 for peak resultant rotational velocity. As expected, raw peak resultant linear acceleration measures exhibited large percent differences from reference measures. Adjustment using regressions resulted in average absolute errors of 10–15% if regression adjustments were done by impact direction or 25–40% if regressions incorporating data from all impact directions were used. Average absolute percent differences in raw peak resultant rotational velocity were much lower, around 10–15%. It is important to define system accuracy for a particular helmet brand, sensor location, and impact direction in order to interpret real-world data.


mTBI Concussion Head injury Head acceleration Head impact biomechanics Impact monitoring Helmet sensors 



This study was supported by a National Science Foundation Graduate Research Fellowship and Fundamental Research Supplement, the Center for Child Injury Prevention Studies, particularly the National Highway Traffic Safety Administration and Toyota Collaborative Safety Research Center, and the SAFER Vehicle and Traffic Safety Centre. The sensors were provided free of charge by GForceTracker Inc and there is no financial relationship between the authors, Children’s Hospital of Philadelphia, and GForceTracker Inc. Dr. Arbogast serves as a consultant for the National Football League Players Association (NFLPA) on head injury biomechanics topics unrelated to this manuscript.


  1. 1.
    Allison, M. A., Y. S. Kang, J. H. Bolte, M. R. Maltese, and K. B. Arbogast. Validation of a helmet-based system to measure head impact biomechanics in ice hockey. Med. Sci. Sports Exerc. 46(1):115–123, 2014. doi: 10.1249/MSS.0b013e3182a32d0d.PubMedCrossRefGoogle Scholar
  2. 2.
    Brainard, L. L., J. G. Beckwith, J. J. Chu, et al. Gender differences in head impacts sustained by collegiate ice hockey players. Med. Sci. Sports Exerc. 44(2):297–304, 2012. doi: 10.1249/MSS.0b013e31822b0ab4.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Browne, K. D., X.-H. Chen, D. F. Meaney, and D. H. Smith. Mild traumatic brain injury and diffuse axonal injury in swine. J. Neurotrauma 28(9):1747–1755, 2011. doi: 10.1089/neu.2011.1913.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Centers for Disease Control and Prevention. Nonfatal traumatic brain injuries from sports and recreation activities–United States, 2001–2005. MMWR Morb. Mortal. Wkl. Rep. 56(29):733–737, 2007.Google Scholar
  5. 5.
    Crisco, J. J., R. Fiore, J. G. Beckwith, et al. Frequency and location of head impact exposures in individual collegiate football players. J. Athl. Train. 45(6):549–559, 2010. doi: 10.4085/1062-6050-45.6.549.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Faul, M., L. Xu, M. M. Wald, and V. Coronado. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta, GA: Centers for Disease Control and Prevention, p. 7, 2010.Google Scholar
  7. 7.
    Funk, J. R., S. M. Duma, S. J. Manoogian, and S. Rowson. Biomechanical risk estimates for mild traumatic brain injury. Annu. Proc. Assoc. Adv. Automot. Med. 51:343–361, 2007.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Funk, J. R., S. Rowson, R. W. Daniel, and S. M. Duma. Validation of concussion risk curves for collegiate football players derived from HITS data. Ann. Biomed. Eng. 40(1):79–89, 2012. doi: 10.1007/s10439-011-0400-8.PubMedCrossRefGoogle Scholar
  9. 9.
    Gennarelli, T. A., L. E. Thibault, and A. K. Ommaya. Pathophysiologic Responses to Rotational and Translational Accelerations of the Head, 1972. doi: 10.4271/720970.
  10. 10.
    Guskiewicz, K. M., and J. P. Mihalik. Biomechanics of sport concussion: quest for the elusive injury threshold. Exerc. Sport Sci. Rev. 39(1):4–11, 2011. doi: 10.1097/JES.0b013e318201f53e.PubMedCrossRefGoogle Scholar
  11. 11.
    USA Hockey. Equipment Sizing Guide. Available at: Accessed July 12, 2012.
  12. 12.
    Jadischke, R., D. C. Viano, N. Dau, A. I. King, and J. McCarthy. On the accuracy of the head impact telemetry (HIT) System used in football helmets. J. Biomech. 46(13):2310–2315, 2013. doi: 10.1016/j.jbiomech.2013.05.030.PubMedCrossRefGoogle Scholar
  13. 13.
    Konrad, C., A. J. Geburek, F. Rist, et al. Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychol. Med. 41(6):1197–1211, 2011. doi: 10.1017/S0033291710001728.PubMedCrossRefGoogle Scholar
  14. 14.
    Meaney, D. F., D. H. Smith, D. T. Ross, and T. A. Gennarelli. Diffuse axonal injury in the miniature pig: biomechanical development and injury threshold. ASME Crashworth. Occup. Prot. Transp. Syst. 29:169–175, 1993.Google Scholar
  15. 15.
    Mihalik, J., D. Bell, S. Marshall, and K. Guskiewicz. Measurement of head impacts in collegiate football players: an investigation of positional and event-type differences. Neurosurgery 61(6):1229–1235, 2007. doi: 10.1227/01.NEU.0000280147.37163.30.PubMedCrossRefGoogle Scholar
  16. 16.
    Mihalik, J. P., K. M. Guskiewicz, J. A. Jeffries, R. M. Greenwald, and S. W. Marshall. Characteristics of head impacts sustained by youth ice hockey players. Proc Inst Mech Eng Part P J Sport Eng Technol. 222(1):45–52, 2008. doi: 10.1243/17543371JSET4.Google Scholar
  17. 17.
    Mihalik, J. P., R. M. Greenwald, J. T. Blackburn, R. C. Cantu, S. W. Marshall, and K. M. Guskiewicz. Effect of infraction type on head impact severity in youth ice hockey. Med. Sci. Sports Exerc. 42(8):1431–1438, 2010. doi: 10.1249/MSS.0b013e3181d2521a.PubMedCrossRefGoogle Scholar
  18. 18.
    Mihalik, J. P., K. M. Guskiewicz, S. W. Marshall, R. M. Greenwald, J. T. Blackburn, and R. C. Cantu. Does cervical muscle strength in youth ice hockey players affect head impact biomechanics? Clin. J. Sport Med. 21(5):416–421, 2011. doi: 10.1097/JSM.0B013E31822C8A5C.PubMedCrossRefGoogle Scholar
  19. 19.
    Mihalik, J. P., K. M. Guskiewicz, S. W. Marshall, J. T. Blackburn, R. C. Cantu, and R. M. Greenwald. Head impact biomechanics in youth hockey: comparisons across playing position, event types, and impact locations. Ann. Biomed. Eng. 40(1):141–149, 2012. doi: 10.1007/s10439-011-0405-3.PubMedCrossRefGoogle Scholar
  20. 20.
    National Center for Injury Prevention and Control (U.S.). Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem. Atlanta, GA, 2003, p. 26.Google Scholar
  21. 21.
    Ocwieja, K. E., J. P. Mihalik, S. W. Marshall, J. D. Schmidt, S. C. Trulock, and K. M. Guskiewicz. The effect of play type and collision closing distance on head impact biomechanics. Ann. Biomed. Eng. 40(1):90–96, 2011. doi: 10.1007/s10439-011-0401-7.PubMedCrossRefGoogle Scholar
  22. 22.
    Padgaonkar, A. J., K. W. Krieger, and A. I. King. Measurement of angular acceleration of a rigid body using linear accelerometers. J. Appl. Mech. 42(3):552, 1975.Google Scholar
  23. 23.
    Reed, N., T. Taha, M. Keightley, et al. Measurement of head impacts in youth ice hockey players. Int. J. Sports Med. 31(11):826–833, 2010. doi: 10.1055/s-0030-1263103.PubMedCrossRefGoogle Scholar
  24. 24.
    Rowson, S., and S. M. Duma. Development of the STAR evaluation system for football helmets: integrating player head impact exposure and risk of concussion. Ann. Biomed. Eng. 39(8):2130–2140, 2011. doi: 10.1007/s10439-011-0322-5.PubMedCrossRefGoogle Scholar
  25. 25.
    Sterr, A., K. A. Herron, C. Hayward, and D. Montaldi. Are mild head injuries as mild as we think? Neurobehavioral concomitants of chronic post-concussion syndrome. BMC Neurol. 6:7, 2006. doi: 10.1186/1471-2377-6-7.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Stojsih, S., M. Boitano, M. Wilhelm, and C. Bir. A prospective study of punch biomechanics and cognitive function for amateur boxers. Br. J. Sports Med. 44(10):725–730, 2010. doi: 10.1136/bjsm.2008.052845.PubMedCrossRefGoogle Scholar
  27. 27.
    Takhounts, E. G., S. A. Ridella, V. Hasija, et al. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.PubMedGoogle Scholar
  28. 28.
    Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of brain injury criteria (Br IC). Stapp Car Crash J. 57:243–266, 2013.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Mari A. Allison
    • 1
    • 2
  • Yun Seok Kang
    • 3
  • Matthew R. Maltese
    • 4
    • 5
  • John H. BolteIV
    • 3
  • Kristy B. Arbogast
    • 1
    • 5
    Email author
  1. 1.The Center for Injury Research and PreventionThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Injury Biomechanics Research CenterThe Ohio State UniversityColumbusUSA
  4. 4.Department of Anesthesiology and Critical Care MedicineThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  5. 5.Department of PediatricsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations