Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 3, pp 697–717 | Cite as

Engineering Complex Orthopaedic Tissues Via Strategic Biomimicry

  • Dovina Qu
  • Christopher Z. Mosher
  • Margaret K. Boushell
  • Helen H. LuEmail author
Article

Abstract

The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue–tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., boneligamentbone) are being actively investigated. Closely related is the effort to re-establish tissue–tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure–function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., boneligamentbone, muscletendonbone, cartilagebone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.

Keywords

Scaffolds Interface Tissue engineering Complex tissues Strategic biomimicry 

Notes

Acknowledgments

This work was supported by the National Institutes of Health (R21-AR056459, R01-AR055280, AR059038), and the New York State Stem Cell ESSC Board (NYSTEM C029551).

References

  1. 1.
    Alhadlaq, A., and J. J. Mao. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J. Bone Joint Surg. Am. 87:936–944, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Allan, K. S., R. M. Pilliar, J. Wang, M. D. Grynpas, and R. A. Kandel. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 13:167–177, 2007.PubMedCrossRefGoogle Scholar
  3. 3.
    Altman, G. H., R. L. Horan, P. Weitzel, and J. C. Richmond. The use of long-term bioresorbable scaffolds for anterior cruciate ligament repair. J. Am. Acad. Orthop. Surg. 16:177–187, 2008.PubMedGoogle Scholar
  4. 4.
    Atala, A., F. K. Kasper, and A. G. Mikos. Engineering complex tissues. Sci. Transl. Med. 4:160rv12, 2012.PubMedCrossRefGoogle Scholar
  5. 5.
    Aviv-Gavriel, M., N. Garti, and H. Furedi-Milhofer. Preparation of a partially calcified gelatin membrane as a model for a soft-to-hard tissue interface. Langmuir 29:683–689, 2013.PubMedCrossRefGoogle Scholar
  6. 6.
    Aydin, H. M. A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv. Eng. Mater. 13:B511–B517, 2011.CrossRefGoogle Scholar
  7. 7.
    Benjamin, M., E. J. Evans, and L. Copp. The histology of tendon attachments to bone in man. J. Anat. 149:89–100, 1986.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Benjamin, M., H. Toumi, J. R. Ralphs, G. Bydder, T. M. Best, and S. Milz. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J. Anat. 208:471–490, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bernstein, A., P. Niemeyer, G. Salzmann, N. P. Sudkamp, R. Hube, J. Klehm, M. Menzel, R. von Eisenhart-Rothe, M. Bohner, L. Gorz, and H. O. Mayr. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: histological results. Acta Biomater. 9:7490–7505, 2013.PubMedCrossRefGoogle Scholar
  10. 10.
    Blevins, F. T., M. Djurasovic, E. L. Flatow, and K. G. Vogel. Biology of the rotator cuff tendon. Orthop. Clin. N. Am. 28:1–16, 1997.CrossRefGoogle Scholar
  11. 11.
    Bourke, S. L., J. Kohn, and M. G. Dunn. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Eng. 10:43–52, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Bullough, P. G., and A. Jagannath. The morphology of the calcification front in articular cartilage. Its significance in joint function. J. Bone Jt. Surg. Br. 65:72–78, 1983.Google Scholar
  13. 13.
    Castro, N. J., C. M. O’Brien, and L. G. Zhang. Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration. AIChE J. 60:432–442, 2014.CrossRefGoogle Scholar
  14. 14.
    Chang, C. H., C. H. Chen, C. Y. Su, H. T. Liu, and C. M. Yu. Rotator cuff repair with periosteum for enhancing tendon-bone healing: a biomechanical and histological study in rabbits. Knee Surg. Sports Traumatol. Arthrosc. 17:1447–1453, 2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, J., H. Chen, P. Li, H. Diao, S. Zhu, L. Dong, R. Wang, T. Guo, J. Zhao, and J. Zhang. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793–4805, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, G., T. Sato, J. Tanaka, and T. Tateishi. Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater. Sci. Eng. C 26:118–123, 2006.CrossRefGoogle Scholar
  17. 17.
    Cheng, H. W., K. D. Luk, K. M. Cheung, and B. P. Chan. In vitro generation of an osteochondral interface from mesenchymal stem cell–collagen microspheres. Biomaterials 32:1526–1535, 2011.PubMedCrossRefGoogle Scholar
  18. 18.
    Chiang, H., C. J. Liao, C. H. Hsieh, C. Y. Shen, Y. Y. Huang, and C. C. Jiang. Clinical feasibility of a novel biphasic osteochondral composite for matrix-associated autologous chondrocyte implantation. Osteoarthritis Cartilage 21:589–598, 2013.PubMedCrossRefGoogle Scholar
  19. 19.
    Cooper, J. A., H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper, R. R., and S. Misol. Tendon and ligament insertion. A light and electron microscopic study. J. Bone Joint Surg. Am. 52:1–20, 1970.PubMedGoogle Scholar
  21. 21.
    Cooper, Jr., J. A., J. S. Sahota, W. J. Gorum, J. Carter, S. B. Doty, and C. T. Laurencin. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc. Natl. Acad. Sci. U.S.A. 104:3049–3054, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Cui, W., X. Li, J. Chen, S. Zhou, and J. Weng. In situ growth kinetics of hydroxyapatite on electrospun poly(dl-lactide) fibers with gelatin grafted. Cryst. Res. Technol. 8:4576–4582, 2008.Google Scholar
  23. 23.
    Cui, W., X. Li, C. Xie, H. Zhuang, S. Zhou, and J. Weng. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials 31:4620–4629, 2010.PubMedCrossRefGoogle Scholar
  24. 24.
    Dickerson, D. A., T. N. Misk, S. Van, G. J. Breur, and E. A. Nauman. In vitro and in vivo evaluation of orthopedic interface repair using a tissue scaffold with a continuous hard tissue-soft tissue transition. J. Orthop. Surg. Res. 8:18, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Ding, C. M., Z. G. Qiao, W. B. Jiang, H. W. Li, J. H. Wei, G. D. Zhou, and K. R. Dai. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 34:6706–6716, 2013.PubMedCrossRefGoogle Scholar
  26. 26.
    Dormer, N. H., M. Singh, L. Wang, C. J. Berkland, and M. S. Detamore. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann. Biomed. Eng. 38:2167–2182, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Dormer, N. H., M. Singh, L. Zhao, N. Mohan, C. J. Berkland, and M. S. Detamore. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J. Biomed. Mater. Res. A 100:162–170, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Dvir, T., B. P. Timko, D. S. Kohane, and R. Langer. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6:13–22, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Erisken, C., D. M. Kalyon, and H. Wang. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065–4073, 2008.PubMedCrossRefGoogle Scholar
  30. 30.
    Erisken, C., D. M. Kalyon, H. J. Wang, C. Ornek-Ballanco, and J. H. Xu. Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta-glycerophosphate concentrations. Tissue Eng. Part A 17:1239–1252, 2011.PubMedCrossRefGoogle Scholar
  31. 31.
    Galatz, L. M., C. M. Ball, S. A. Teefey, W. D. Middleton, and K. Yamaguchi. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J. Bone Jt. Surg. Am. 86-A:219–224, 2004.Google Scholar
  32. 32.
    Galperin, A., R. A. Oldinski, S. J. Florczyk, J. D. Bryers, M. Q. Zhang, and B. D. Ratner. Integrated bi-Layered scaffold for osteochondral tissue engineering. Adv. Healthcare Mater. 2:872–883, 2013.CrossRefGoogle Scholar
  33. 33.
    Gao, J., J. E. Dennis, L. A. Solchaga, A. S. Awadallah, V. M. Goldberg, and A. I. Caplan. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 7:363–371, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Genin, G. M., A. Kent, V. Birman, B. Wopenka, J. D. Pasteris, P. J. Marquez, and S. Thomopoulos. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97:976–985, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Getelman, M. H., and M. J. Friedman. Revision anterior cruciate ligament reconstruction surgery. J. Am. Acad. Orthop. Surg. 7:189–198, 1999.PubMedGoogle Scholar
  36. 36.
    Getgood, A. M., S. J. Kew, R. Brooks, H. Aberman, T. Simon, A. K. Lynn, and N. Rushton. Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model. Knee 19:422–430, 2012.PubMedCrossRefGoogle Scholar
  37. 37.
    Grayson, W. L., S. Bhumiratana, P. H. Grace Chao, C. T. Hung, and G. Vunjak-Novakovic. Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr. Cartilage. 18:714–723, 2010.CrossRefGoogle Scholar
  38. 38.
    Harley, B. A., A. K. Lynn, Z. Wissner-Gross, W. Bonfield, I. V. Yannas, and L. J. Gibson. Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. A 92:1078–1093, 2010.PubMedGoogle Scholar
  39. 39.
    Harley, B. A., A. K. Lynn, Z. Wissner-Gross, W. Bonfield, I. V. Yannas, and L. J. Gibson. Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. A 92:1078–1093, 2010.PubMedGoogle Scholar
  40. 40.
    Hems, T., and B. Tillmann. Tendon entheses of the human masticatory muscles. Anat. Embryol. 202:201–208, 2000.PubMedCrossRefGoogle Scholar
  41. 41.
    Heymer, A., G. Bradica, J. Eulert, and U. Noth. Multiphasic collagen fibre-PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: an in vitro study. J. Tissue Eng. Regen. Med. 3:389–397, 2009.PubMedCrossRefGoogle Scholar
  42. 42.
    Horan, R. L., I. Toponarski, H. E. Boepple, P. P. Weitzel, J. C. Richmond, and G. H. Altman. Design and characterization of a scaffold for anterior cruciate ligament engineering. J. Knee Surg. 22:82–92, 2009.PubMedCrossRefGoogle Scholar
  43. 43.
    Huang, C. Y., V. M. Wang, R. J. Pawluk, J. S. Bucchieri, W. N. Levine, L. U. Bigliani, V. C. Mow, and E. L. Flatow. Inhomogeneous mechanical behavior of the human supraspinatus tendon under uniaxial loading. J. Orthop. Res. 23:924–930, 2005.PubMedCrossRefGoogle Scholar
  44. 44.
    Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartilage 10:432–463, 2002.CrossRefGoogle Scholar
  45. 45.
    Hunziker, E. B., I. M. Driesang, and C. Saager. Structural barrier principle for growth factor-based articular cartilage repair. Clin. Orthop. Relat. Res. 391:S182–S189, 2001.PubMedCrossRefGoogle Scholar
  46. 46.
    Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543, 2000.PubMedCrossRefGoogle Scholar
  47. 47.
    Ibrahim, N. S., G. Krishnamurithy, H. R. B. Raghavendran, S. Puvaneswary, N. W. Min, and T. Kamarul. Novel HA-PVA/NOCC bilayered scaffold for osteochondral tissue-engineering applications—fabrication, characterization, in vitro and in vivo biocompatibility study. Mater. Lett. 113:25–29, 2013.CrossRefGoogle Scholar
  48. 48.
    Jiang, J., N. L. Leong, J. C. Mung, C. Hidaka, and H. H. Lu. Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthr. Cartilage 16:70–82, 2008.CrossRefGoogle Scholar
  49. 49.
    Jiang, J., A. Tang, G. A. Ateshian, X. E. Guo, C. T. Hung, and H. H. Lu. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann. Biomed. Eng. 38:2183–2196, 2010.PubMedCrossRefGoogle Scholar
  50. 50.
    Kandel, R. A., M. Hurtig, and M. Grynpas. Characterization of the mineral in calcified articular cartilagenous tissue formed in vitro. Tissue Eng. 5:25–34, 1999.PubMedCrossRefGoogle Scholar
  51. 51.
    Khanarian, N. T., M. K. Boushell, J. P. Spalazzi, N. Pleshko, A. L. Boskey, and H. H. Lu. FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age. J. Bone Miner. Res. 2014. doi: 10.1002/jbmr.2284.
  52. 52.
    Khanarian, N. T., N. M. Haney, R. A. Burga, and H. H. Lu. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33:5247–5258, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Khanarian, N. T., J. Jiang, L. Q. Wan, V. C. Mow, and H. H. Lu. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng. Part A 18:533–545, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Kimura, Y., A. Hokugo, T. Takamoto, Y. Tabata, and H. Kurosawa. Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng. Part C 14:47–57, 2008.CrossRefGoogle Scholar
  55. 55.
    Kon, E., M. Delcogliano, G. Filardo, M. Busacca, M. A. Di, and M. Marcacci. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am. J. Sports Med. 39:1180–1190, 2011.PubMedCrossRefGoogle Scholar
  56. 56.
    Kon, E., A. Mutini, E. Arcangeli, M. Delcogliano, G. Filardo, A. N. Nicoli, D. Pressato, R. Quarto, S. Zaffagnini, and M. Marcacci. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J. Tissue Eng. Regen. Med. 4:300–308, 2010.PubMedCrossRefGoogle Scholar
  57. 57.
    Kostrominova, T. Y., S. Calve, E. M. Arruda, and L. M. Larkin. Ultrastructure of myotendinous junctions in tendon-skeletal muscle constructs engineered in vitro. Histol. Histopathol. 24:541–550, 2009.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Ladd, M. R., S. J. Lee, J. D. Stitzel, A. Atala, and J. J. Yoo. Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering. Biomaterials 32:1549–1559, 2011.PubMedCrossRefGoogle Scholar
  59. 59.
    Langer, R., and J. P. Vacanti. Tissue engineering. Science 260:920–926, 1993.PubMedCrossRefGoogle Scholar
  60. 60.
    Larkin, L. M., S. Calve, T. Y. Kostrominova, and E. M. Arruda. Structure and functional evaluation of tendon-skeletal muscle constructs engineered in vitro. Tissue Eng. 12:3149–3158, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Laurencin, C. T., A. M. A. Ambrosio, M. D. Borden, and J. A. Cooper. Tissue engineering: orthopedic applications. Annu. Rev. Biomed. Eng. 1:19–46, 1999.Google Scholar
  62. 62.
    Lee, J., W. Il Choi, G. Tae, Y. H. Kim, S. S. Kang, S. E. Kim, S. H. Kim, Y. Jung, and S. H. Kim. Enhanced regeneration of the ligament-bone interface using a poly(l-lactide-co-epsilon-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomater. 7:244–257, 2011.PubMedCrossRefGoogle Scholar
  63. 63.
    Li, Y., C. Ortiz, and M. C. Boyce. Stiffness and strength of suture joints in nature. Phys. Rev. E 84:062904, 2011.CrossRefGoogle Scholar
  64. 64.
    Li, X. R., J. W. Xie, J. Lipner, X. Y. Yuan, S. Thomopoulos, and Y. N. Xia. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 9:2763–2768, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Liu, W., J. Lipner, J. Xie, C. N. Manning, S. Thomopoulos, and Y. Xia. Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl. Mater. Interfaces 6:2842–2849, 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Liu, Y. X., S. Thomopoulos, V. Birman, J. S. Li, and G. M. Genin. Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. Mech. Mater. 44:83–92, 2012.CrossRefGoogle Scholar
  67. 67.
    Liu, W., Y. C. Yeh, J. Lipner, J. Xie, H. W. Sung, S. Thomopoulos, and Y. Xia. Enhancing the stiffness of electrospun nanofiber scaffolds with a controlled surface coating and mineralization. Langmuir 27:9088–9093, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Lu, H. H., J. A. Cooper, Jr., S. Manuel, J. W. Freeman, M. A. Attawia, F. K. Ko, and C. T. Laurencin. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816, 2005.PubMedCrossRefGoogle Scholar
  69. 69.
    Lu, H. H., J. Jiang, A. Tang, C. T. Hung, and X. E. Guo. Development of controlled heterogeneity on a polymer-ceramic hydrogel scaffold for osteochondral repair. Bioceramics 17:607–610, 2005.Google Scholar
  70. 70.
    Lu, H. H., and S. Thomopoulos. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15:201–226, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Ma, J., K. Goble, M. Smietana, T. Kostrominova, L. Larkin, and E. M. Arruda. Morphological and functional characteristics of three-dimensional engineered bone-ligament-bone constructs following implantation. J. Biomech. Eng. 131:101017, 2009.PubMedCrossRefGoogle Scholar
  72. 72.
    Ma, J., M. J. Smietana, T. Y. Kostrominova, E. M. Wojtys, L. M. Larkin, and E. M. Arruda. Three-dimensional engineered bone-ligament-bone constructs for anterior cruciate ligament replacement. Tissue Eng. Part A 18:103–116, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Mann, K. A., D. C. Ayers, F. W. Werner, R. J. Nicoletta, and M. D. Fortino. Tensile strength of the cement-bone interface depends on the amount of bone interdigitated with PMMA cement. J. Biomech. 30:339–346, 1997.PubMedCrossRefGoogle Scholar
  74. 74.
    Marquass, B., J. S. Somerson, P. Hepp, T. Aigner, S. Schwan, A. Bader, C. Josten, M. Zscharnack, and R. M. Schulz. A novel MSC-seeded triphasic construct for the repair of osteochondral defects. J. Orthop. Res. 28:1586–1599, 2010.PubMedCrossRefGoogle Scholar
  75. 75.
    Matyas, J. R., M. G. Anton, N. G. Shrive, and C. B. Frank. Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. J. Biomech. 28:147–157, 1995.PubMedCrossRefGoogle Scholar
  76. 76.
    Mente, P. L., and J. L. Lewis. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 12:637–647, 1994.PubMedCrossRefGoogle Scholar
  77. 77.
    Mikos, A. G., S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, F. J. Schoen, M. Toner, D. Mooney, A. Atala, M. E. Dyke, D. Kaplan, and G. Vunjak-Novakovic. Engineering complex tissues. Tissue Eng. 12:3307–3339, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Moffat, K. L., R. T. Cassilly, S. D. Subramony, et al. In vivo evaluation of a bi-phasic nanofiber-based scaffold for integrative rotator cuff repair. In: Transactions of the 56th Orthopaedic Research Society, 2010.Google Scholar
  79. 79.
    Moffat, K. L., W. N. Levine, and H. H. Lu. In vitro evaluation of rotator cuff tendon fibroblasts on aligned composite scaffold of polymer nanofibers and hydroxyapatite nanoparticles. In: Transactions of the 54th Orthopaedic Research Society, 2008.Google Scholar
  80. 80.
    Moffat, K. L., W. H. Sun, P. E. Pena, N. O. Chahine, S. B. Doty, G. A. Ateshian, C. T. Hung, and H. H. Lu. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl. Acad. Sci. U.S.A. 105:7947–7952, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Mohan, N., N. H. Dormer, K. L. Caldwell, V. H. Key, C. J. Berkland, and M. S. Detamore. Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng. Part A 17:2845–2855, 2011.PubMedCrossRefGoogle Scholar
  82. 82.
    Mohan, N., V. Gupta, B. Sridharan, A. Sutherland, and M. S. Detamore. The potential of encapsulating “raw materials” in 3D osteochondral gradient scaffolds. Biotechnol. Bioeng. 111:829–841, 2014.PubMedCrossRefGoogle Scholar
  83. 83.
    Myers, B. S., C. T. Woolley, T. L. Slotter, W. E. Garrett, and T. M. Best. The influence of strain rate on the passive and stimulated engineering stress–large strain behavior of the rabbit tibialis anterior muscle. J. Biomech. Eng. 120:126–132, 1998.PubMedCrossRefGoogle Scholar
  84. 84.
    Oegema, Jr., T. R., R. J. Carpenter, F. Hofmeister, and R. C. Thompson, Jr. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc. Res. Tech. 37:324–332, 1997.PubMedCrossRefGoogle Scholar
  85. 85.
    Oegema Jr., T. R., and R. C. Thompson Jr. Cartilage-bone interface (tidemark). In: Cartilage Changes in Osteoarthritis, edited by K. D. Brandt. Indianapolis, IN: Indiana School of Medicine Publication, 1990, pp. 43–52.Google Scholar
  86. 86.
    Paxton, J. Z., K. Donnelly, R. P. Keatch, and K. Baar. Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng. Part A 15:1201–1209, 2009.PubMedCrossRefGoogle Scholar
  87. 87.
    Paxton, J. Z., L. M. Grover, and K. Baar. Engineering an in vitro model of a functional ligament from bone to bone. Tissue Eng. Part A 16(11):3515–3525, 2010.PubMedCrossRefGoogle Scholar
  88. 88.
    Phillips, J. E., K. L. Burns, J. M. Le Doux, R. E. Guldberg, and A. J. Garcia. Engineering graded tissue interfaces. Proc. Natl. Acad. Sci. U.S.A. 105:12170–12175, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Qu, D., S. D. Subramony, A. L. Boskey, et al. Compositional mapping of the mature anterior cruciate ligament-to-bone insertion site. In: Transactions of the Orthopaedic Research Society, 2014.Google Scholar
  90. 90.
    Quain, J. Elements of Anatomy: In 3 Volumes. New York, NY: Walton and Maberly, 1856.Google Scholar
  91. 91.
    Redler, I., V. C. Mow, M. L. Zimny, and J. Mansell. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin. Orthop. Relat. Res. 112:357–362, 1975.PubMedGoogle Scholar
  92. 92.
    Re’em, T., F. Witte, E. Willbold, E. Ruvinov, and S. Cohen. Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater. 8:3283–3293, 2012.PubMedCrossRefGoogle Scholar
  93. 93.
    Rodeo, S. A., S. P. Arnoczky, P. A. Torzilli, C. Hidaka, and R. F. Warren. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J. Bone Jt. Surg. Am. 75:1795–1803, 1993.Google Scholar
  94. 94.
    Rumian, A. P., A. L. Wallace, and H. L. Birch. Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model. J. Orthop. Res. 25:458–464, 2007.PubMedCrossRefGoogle Scholar
  95. 95.
    Salerno, A., S. Iannace, and P. A. Netti. Graded biomimetic osteochondral scaffold prepared via CO2 foaming and micronized NaCl leaching. Mater. Lett. 82:137–140, 2012.CrossRefGoogle Scholar
  96. 96.
    Samavedi, S., S. A. Guelcher, A. S. Goldstein, and A. R. Whittington. Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface. Biomaterials 33:7727–7735, 2012.PubMedCrossRefGoogle Scholar
  97. 97.
    Samavedi, S., C. Olsen Horton, S. A. Guelcher, A. S. Goldstein, and A. R. Whittington. Fabrication of a model continuously graded co-electrospun mesh for regeneration of the ligament-bone interface. Acta Biomater. 7:4131–4138, 2011.PubMedCrossRefGoogle Scholar
  98. 98.
    Samavedi, S., P. Vaidya, P. Gaddam, A. R. Whittington, and A. S. Goldstein. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Biotechnol. Bioeng. 111(12):2549–2559, 2014.Google Scholar
  99. 99.
    Sano, H., Y. Saijo, and S. Kokubun. Non-mineralized fibrocartilage shows the lowest elastic modulus in the rabbit supraspinatus tendon insertion: measurement with scanning acoustic microscopy. J. Shoulder Elbow Surg. 15:743–749, 2006.PubMedCrossRefGoogle Scholar
  100. 100.
    Schaefer, D., I. Martin, P. Shastri, R. F. Padera, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. In vitro generation of osteochondral composites. Biomaterials 21:2599–2606, 2000.PubMedCrossRefGoogle Scholar
  101. 101.
    Scotti, C., D. Wirz, F. Wolf, D. J. Schaefer, V. Burgin, A. U. Daniels, V. Valderrabano, C. Candrian, M. Jakob, I. Martin, and A. Barbero. Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials 31:2252–2259, 2010.PubMedCrossRefGoogle Scholar
  102. 102.
    Seo, J. P., T. Tanabe, N. Tsuzuki, S. Haneda, K. Yamada, H. Furuoka, Y. Tabata, and N. Sasaki. Effects of bilayer gelatin/beta-tricalcium phosphate sponges loaded with mesenchymal stem cells, chondrocytes, bone morphogenetic protein-2, and platelet rich plasma on osteochondral defects of the talus in horses. Res. Vet. Sci. 95:1210–1216, 2013.PubMedCrossRefGoogle Scholar
  103. 103.
    Shao, X., J. C. Goh, D. W. Hutmacher, E. H. Lee, and G. Zigang. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng. 12:1539–1551, 2006.PubMedCrossRefGoogle Scholar
  104. 104.
    Sherwood, J. K., S. L. Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K. Landeen, and A. Ratcliffe. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751, 2002.PubMedCrossRefGoogle Scholar
  105. 105.
    Shi, J., L. Wang, F. Zhang, H. Li, L. Lei, L. Liu, and Y. Chen. Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering. ACS Appl. Mater. Interfaces 2:1025–1030, 2010.PubMedCrossRefGoogle Scholar
  106. 106.
    Singh, M., N. Dormer, J. R. Salash, J. M. Christian, D. S. Moore, C. Berkland, and M. S. Detamore. Three-dimensional macroscopic scaffolds with a gradient in stiffness for functional regeneration of interfacial tissues. J. Biomed. Mater. Res. A 94:870–876, 2010.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Skalak, R. Tissue Engineering: Proceedings of a Workshop, Held at Granlibakken, Lake Tahoe, California, February 26–29, 1988; New York, NY: Liss, 1988.Google Scholar
  108. 108.
    Soltz, M. A., and G. A. Ateshian. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31:927–934, 1998.PubMedCrossRefGoogle Scholar
  109. 109.
    Spalazzi, J. P., A. L. Boskey, N. Pleshko, and H. H. Lu. Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS ONE 8:e74349, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Spalazzi, J. P., E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo, and H. H. Lu. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86:1–12, 2008.PubMedCrossRefGoogle Scholar
  111. 111.
    Spalazzi, J. P., S. B. Doty, K. L. Moffat, W. N. Levine, and H. H. Lu. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 12:3497–3508, 2006.PubMedCrossRefGoogle Scholar
  112. 112.
    Spalazzi, J. P., J. Gallina, S. D. Fung-Kee-Fung, E. E. Konofagou, and H. H. Lu. Elastographic imaging of strain distribution in the anterior cruciate ligament and at the ligament-bone insertions. J. Orthop. Res. 24:2001–2010, 2006.PubMedCrossRefGoogle Scholar
  113. 113.
    Spalazzi, J. P., M. C. Vyner, M. T. Jacobs, K. L. Moffat, and H. H. Lu. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers. Clin. Orthop. Relat. Res. 466:1938–1948, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Subramony, S. D., D. Delos, A. Weber, et al. In vivo evaluation of a mechanoactive nanofiber scaffold for integrative ACL reconstruction. In: Transactions of the 57th Orthopaedic Research Society, 2011.Google Scholar
  115. 115.
    Subramony, S. D., D. Qu, R. Ma, et al. In vitro optimization and in vivo evaluation of a multi-phased nanofiber-based synthetic ACL scaffold. In: Transactions of the 60th Orthopaedic Research Society, 2014.Google Scholar
  116. 116.
    Sundar, S., C. J. Pendegrass, and G. W. Blunn. Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J. Biomed. Mater. Res. B 88:115–122, 2009.CrossRefGoogle Scholar
  117. 117.
    Swasdison, S., and R. Mayne. In vitro attachment of skeletal muscle fibers to a collagen gel duplicates the structure of the myotendinous junction. Exp. Cell Res. 193:227–231, 1991.PubMedCrossRefGoogle Scholar
  118. 118.
    Swasdison, S., and R. Mayne. Formation of highly organized skeletal muscle fibers in vitro. Comparison with muscle development in vivo. J. Cell Sci. 102:643–652, 1992.PubMedGoogle Scholar
  119. 119.
    Swieszkowski, W., B. H. S. Tuan, K. J. Kurzydlowski, and D. W. Hutmacher. Repair and regeneration of osteochondral defects in the articular joints. Biomol. Eng. 24:489–495, 2007.PubMedCrossRefGoogle Scholar
  120. 120.
    Temenoff, J. S., and A. G. Mikos. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440, 2000.PubMedCrossRefGoogle Scholar
  121. 121.
    Thomopoulos, S., G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky. Variations of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21:413–419, 2003.PubMedCrossRefGoogle Scholar
  122. 122.
    Tidball, J. G. Myotendinous junction: morphological changes and mechanical failure associated with muscle cell atrophy. Exp. Mol. Pathol. 40:1–12, 1984.PubMedCrossRefGoogle Scholar
  123. 123.
    Tidball, J. G. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc. Sport Sci. Rev. 19:419–445, 1991.PubMedCrossRefGoogle Scholar
  124. 124.
    Trotter, J. A. Structure-function considerations of muscle–tendon junctions. Comp. Biochem. Physiol. A 133:1127–1133, 2002.CrossRefGoogle Scholar
  125. 125.
    Vunjak-Novakovic, G., G. Altman, R. Horan, and D. L. Kaplan. Tissue engineering of ligaments. Annu. Rev. Biomed. Eng. 6:131–156, 2004.PubMedCrossRefGoogle Scholar
  126. 126.
    Wang, I. E., S. Mitroo, F. H. Chen, H. H. Lu, and S. B. Doty. Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J. Orthop. Res. 24:1745–1755, 2006.PubMedCrossRefGoogle Scholar
  127. 127.
    Wang, I. E., J. Shan, R. Choi, S. Oh, C. K. Kepler, F. H. Chen, and H. H. Lu. Role of osteoblast–fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res. 25:1609–1620, 2007.PubMedCrossRefGoogle Scholar
  128. 128.
    Wang, X., E. Wenk, X. Zhang, L. Meinel, G. Vunjak-Novakovic, and D. L. Kaplan. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control Release 134:81–90, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Weitzel, P. P., J. C. Richmond, G. H. Altman, T. Calabro, and D. L. Kaplan. Future direction of the treatment of ACL ruptures. Orthop. Clin. N. Am. 33:653–661, 2002.CrossRefGoogle Scholar
  130. 130.
    Woo, S. L., J. Maynard, D. L. Butler, et al. Ligament, tendon, and joint capsule insertions to bone. In: Injury and Repair of the Musculosketal Soft Tissues, edited by S. L. Woo, and J. A. Buckwalter. Savannah, GA: American Academy of Orthopaedic Surgeons, 1988, pp. 133–166.Google Scholar
  131. 131.
    Wren, T. A., S. A. Yerby, G. S. Beaupre, and D. R. Carter. Mechanical properties of the human achilles tendon. Clin. Biomech. 16:245–251, 2001.CrossRefGoogle Scholar
  132. 132.
    Yang, P. J., and J. S. Temenoff. Engineering orthopedic tissue interfaces. Tissue. Eng. Part B 15:127–141, 2009.CrossRefGoogle Scholar
  133. 133.
    Yunos, D., Z. Ahmad, V. Salih, and A. Boccaccini. Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass(R)-derived foams. J. Biomater. Appl. 27:537–551, 2013.PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang, X., J. M. Caldwell, J. Easley, et al. In vivo evaluation of a biomimetic biphasic scaffold in sheep. In: Transactions of the 60th Orthopaedic Research Society, 2014.Google Scholar
  135. 135.
    Zhang, S., L. Chen, Y. Jiang, Y. Cai, G. Xu, T. Tong, W. Zhang, L. Wang, J. Ji, P. Shi, and H. W. Ouyang. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 9:7236–7247, 2013.PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang, W., J. L. Chen, J. D. Tao, C. C. Hu, L. K. Chen, H. S. Zhao, G. W. Xu, B. C. Heng, and H. W. Ouyang. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34:6046–6057, 2013.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhang, K., Y. Ma, and L. F. Francis. Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces. J. Biomed. Mater. Res. 61:551–563, 2002.PubMedCrossRefGoogle Scholar
  138. 138.
    Zhen, G., and X. Cao. Targeting TGFbeta signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol. Sci. 35:227–236, 2014.PubMedCrossRefGoogle Scholar
  139. 139.
    Zou, B., Y. Liu, X. Luo, F. Chen, X. Guo, and X. Li. Electrospun fibrous scaffolds with continuous gradations in mineral contents and biological cues for manipulating cellular behaviors. Acta Biomater. 8:1576–1585, 2012.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Dovina Qu
    • 1
  • Christopher Z. Mosher
    • 1
  • Margaret K. Boushell
    • 1
  • Helen H. Lu
    • 1
    Email author
  1. 1.Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations