Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 5, pp 1089–1097 | Cite as

Alterations in Sagittal Plane Knee Kinetics in Knee Osteoarthritis Using a Biomechanical Therapy Device

  • Eytan M. Debbi
  • Alon Wolf
  • Yulia Goryachev
  • Nimrod Rozen
  • Amir Haim
Article

Abstract

Knee frontal (adduction/abduction) and sagittal (flexion/extension) moments have been implicated in the pathomechanics of knee osteoarthritis (OA). The aim of this study was to evaluate the change in the knee sagittal moment in a cohort of patients with knee OA undergoing a biomechanical training program. Twenty-five female patients with symptomatic medial compartment knee OA were enrolled in a customized biomechanical intervention program. All patients underwent consecutive gait analyses prior to treatment initiation, and after 3 months and 9 months of therapy. Self-evaluative questionnaires, spatiotemporal gait parameters, peak knee sagittal moments, knee sagittal impulses, and duration of knee moments were compared throughout the duration of therapy. Differences between baseline and follow-up values were examined using nonparametric tests. Peak knee flexion moment (KFM) at loading response decreased significantly with therapy (p = 0.001). Duration of KFM and impulse of knee flexion also decreased significantly (p = 0.024 and p = 0.029, respectively). These changes were accompanied by increased walking velocity, significant pain reduction, and increased functional activity. Post-training kinetic evaluation demonstrated profound alterations of knee sagittal moments at the loading response KFM. We speculate that knee sagittal moments can potentially be improved in patients with knee OA over time with a biomechanical training program.

Keywords

Kinetics Moment Flexion Extension Gait Pain Stiffness Function 

Notes

Acknowledgments

The authors thank APOS-Medical and Sports Technologies Ltd. for their generosity in contributing the devices used in the study.

Funding statement

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest

No author has any conflict of interest to declare.

References

  1. 1.
    Al-Zahrani, K. S., and A. M. Bakheit. A study of the gait characteristics of patients with chronic osteoarthritis of the knee. Disabil. Rehabil. 24:275–280, 2002.CrossRefPubMedGoogle Scholar
  2. 2.
    Baliunas, A. J., D. E. Hurwitz, A. B. Ryals, et al. Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthr. Cartil. 10:573–579, 2002.CrossRefPubMedGoogle Scholar
  3. 3.
    Bar-Ziv, Y., Y. Beer, Y. Ran, S. Benedict, and N. Halperin. A treatment applying a biomechanical device to the feet of patients with knee osteoarthritis results in reduced pain and improved function: a prospective controlled study. BMC Musculoskelet. Disord. 11:179, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Bejek, Z., R. Paróczai, A. Illyés, and R. M. Kiss. The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 14:612–622, 2006.CrossRefPubMedGoogle Scholar
  5. 5.
    Bejek, Z., R. Paróczai, M. Szendröi, and R. M. Kiss. Gait analysis following TKA: comparison of conventional technique, computer-assisted navigation and minimally invasive technique combined with computer-assisted navigation. Knee Surg. Sports Traumatol. Arthrosc. 19:285–291, 2011.CrossRefPubMedGoogle Scholar
  6. 6.
    Childs, J. D., P. J. Sparto, G. K. Fitzgerald, M. Bizzini, and J. J. Irrgang. Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis. Clin. Biomech. (Bristol, Avon) 19:44, 2004.CrossRefGoogle Scholar
  7. 7.
    Crenshaw, S. J., F. E. Pollo, and E. F. Calton. Effects of lateral-wedged insoles on kinetics at the knee. Clin. Orthop. Relat. Res. 375:185–192, 2000.Google Scholar
  8. 8.
    Debbi, E. M., A. Wolf, and A. Haim. Detecting and quantifying global instability during a dynamic task using kinetic and kinematic gait parameters. J. Biomech. 45:1366–1371, 2012.CrossRefPubMedGoogle Scholar
  9. 9.
    Fitzgerald, G. K., S. R. Piva, and J. J. Irrgang. Reports of joint instability in knee osteoarthritis: its prevalence and relationship to physical function. Arthritis Rheum. 51:941–946, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Fregly, B. J., D. D. D’Lima, and C. W. Colwell, Jr. Effective gait patterns for offloading the medial compartment of the knee. J. Orthop. Res. 27:1016–1021, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Gok, H., S. Ergin, and G. Yavuzer. Kinetic and kinematic characteristics of gait in patients with medial knee arthrosis. Acta Orthop. Scand. 73:647–652, 2002.CrossRefPubMedGoogle Scholar
  12. 12.
    Goryachev, Y., E. M. Debbi, A. Haim, and A. Wolf. The effect of manipulation of the center of pressure of the foot during gait on the activation patterns of the lower limb musculature. J. Electromyogr. Kinesiol. 21:333–339, 2011.CrossRefPubMedGoogle Scholar
  13. 13.
    Haim, A., N. Rozen, S. Dekel, N. Halperin, and A. Wolf. Control of knee coronal plane moment via modulation of center of pressure: a prospective gait analysis study. J. Biomech. 41:3010–3016, 2008.CrossRefPubMedGoogle Scholar
  14. 14.
    Haim, A., N. Rozen, and A. Wolf. The influence of sagittal center of pressure offset on gait kinematics and kinetics. J. Biomech. 43:969–977, 2010.CrossRefPubMedGoogle Scholar
  15. 15.
    Haim, A., G. Rubin, N. Rozen, Y. Goryachev, and A. Wolf. Reduction in knee adduction moment via non-invasive biomechanical training: a longitudinal gait analysis study. J. Biomech. 45:41–45, 2012.CrossRefPubMedGoogle Scholar
  16. 16.
    Hortobagyi, T., L. Westerkamp, S. Beam, et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin. Biomech. (Bristol, Avon) 20:97–104, 2005.CrossRefGoogle Scholar
  17. 17.
    Hurwitz, D. E., A. B. Ryals, J. P. Case, J. A. Block, and T. P. Andriacchi. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. J. Orthop. Res. 20:101–107, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Kadaba, M. P., H. K. Ramakrishnan, and M. E. Wootten. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8:383–392, 1990.CrossRefPubMedGoogle Scholar
  19. 19.
    Kaufman, K. R., C. Hughes, B. F. Morrey, M. Morrey, and K. N. An. Gait characteristics of patients with knee osteoarthritis. J. Biomech. 34:907–915, 2001.CrossRefPubMedGoogle Scholar
  20. 20.
    Kosinski, M., S. D. Keller, J. E. Ware Jr., H. T. Hatoum, and S. X. Kong. The SF-36 Health Survey as a generic outcome measure in clinical trials of patients with osteoarthritis and rheumatoid arthritis: relative validity of scales in relation to clinical measures of arthritis severity. Med. Care 37:MS23–39, 1999.Google Scholar
  21. 21.
    Levinger, P., H. B. Menz, A. D. Morrow, et al. Knee biomechanics early after knee replacement surgery predict abnormal gait patterns 12 months postoperatively. J. Orthop. Res. 30:371–376, 2012.CrossRefPubMedGoogle Scholar
  22. 22.
    Lewek, M. D., K. S. Rudolph, and L. Snyder-Mackler. Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis. Osteoarthr. Cartil. 12:745–751, 2004.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Miyazaki, T., M. Wada, H. Kawahara, et al. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61:617–622, 2002.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Pham, T., D. van der Heijde, R. D. Altman, J. J. Anderson, N. Bellamy, M. Hochberg, L. Simon, V. Strand, T. Woodworth, and M. Dougados. OMERACT-OARSI initiative: Osteoarthritis Research Society International set of responder criteria for osteoarthritis clinical trials revisited. Osteoarthr. Cartil. 12:389–399, 2004.CrossRefPubMedGoogle Scholar
  25. 25.
    Roos, E. M., M. Klassbo, and L. S. Lohmander. WOMAC osteoarthritis index. Reliability, validity, and responsiveness in patients with arthroscopically assessed osteoarthritis. Western Ontario and MacMaster Universities. Scand. J. Rheumatol. 28:210–215, 1999.CrossRefPubMedGoogle Scholar
  26. 26.
    Rose, J., and J. G. Gamble. Human Walking, Vol. 3. Philadelphia: Lippincott Williams & Wilkins, 2006.Google Scholar
  27. 27.
    Schipplein, O. D., and T. P. Andriacchi. Interaction between active and passive knee stabilizers during level walking. J. Orthop. Res. 9:113–119, 1991.CrossRefPubMedGoogle Scholar
  28. 28.
    Sharma, L., D. E. Hurwitz, E. J. Thonar, et al. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum. 41:1233–1240, 1998.CrossRefPubMedGoogle Scholar
  29. 29.
    Sharma, L., C. Lou, D. T. Felson, et al. Laxity in healthy and osteoarthritic knees. Arthritis Rheum. 42:861–870, 1999.CrossRefPubMedGoogle Scholar
  30. 30.
    Shimada, S., S. Kobayashi, M. Wada, et al. Effects of disease severity on response to lateral wedged shoe insole for medial compartment knee osteoarthritis. Arch. Phys. Med. Rehabil. 87:1436–1441, 2006.CrossRefPubMedGoogle Scholar
  31. 31.
    Winter, D. A. The Biomechanics and Motor Control of Human Gait, Vol. 2. Waterloo, ON: University of Waterloo Press, 1991.Google Scholar
  32. 32.
    Yasuda, K., and T. Sasaki. The mechanics of treatment of the osteoarthritic knee with a wedged insole. Clin. Orthop. Relat. Res. 215:162–172, 1987.Google Scholar
  33. 33.
    Zajac, F. E., R. R. Neptune, and S. A. Kautz. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Eytan M. Debbi
    • 1
  • Alon Wolf
    • 1
  • Yulia Goryachev
    • 1
  • Nimrod Rozen
    • 2
  • Amir Haim
    • 1
    • 3
  1. 1.Biorobotics and Biomechanics Laboratory, Faculty of Mechanical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Orthopedic SurgeryHa’Emek Medical CenterAfulaIsrael
  3. 3.Department of Orthopedic SurgerySourasky Medical CenterTel AvivIsrael

Personalised recommendations