Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 5, pp 1158–1165 | Cite as

Direct Writing of Polymeric Coatings on Magnesium Alloy for Tracheal Stent Applications

  • Jessica Perkins
  • Zhigang Xu
  • Christopher Smith
  • Abhijit Roy
  • Prashant N. Kumta
  • Jenora Waterman
  • Dawn Conklin
  • Salil Desai
Article

Abstract

This paper investigates the direct-write inkjet method for depositing multi-layer coatings of biodegradable polymers on magnesium alloy surface. Immersion studies were conducted on Poly(lactic-co-glycolic) acid (PLGA), polycaprolactone (PCL), and poly-ester urethane urea (PEUU) coatings to determine the corrosion behavior of different samples based on their varying degradation properties. Using the inductively coupled plasma spectroscopy, a reduction in magnesium ion concentration was observed from the polymer-coated samples indicative of the lower corrosion rates as compared to the uncoated Mg substrate. Findings also showed correlation between the release of the magnesium ions and the health of fully differentiated normal human bronchial epithelial (NHBE) cells via evaluation of key biomarkers of inflammation and toxicity, cyclooxygenase-2 (COX-2) and lactate dehydrogenase (LDH), respectively. The induction of COX-2 gene expression was proportional to the increase in magnesium exposure. In addition, the release of higher magnesium content from uncoated and PCL polymer coated samples resulted in lower LDH activity based on the favorable response of the NHBE cells. PEUU and PLGA polymer coatings provided good barrier layer corrosion protection. This research evaluates candidate polymer coatings as a source for therapeutic agents and barrier layer to control the corrosion of magnesium alloys for tracheal applications.

Keywords

Biomedical Corrosion control Inkjet printing Lactate dehydrogenase release assay Polymerase chain reaction 

Notes

Acknowledgements

The authors would like to thank the NSF Engineering Research Center for Revolutionizing Metallic Biomaterials (NSF–EEC Award #0812348) and NSF CAREER Award #0846562 for support towards this research. We would also like to express our gratitude to Dr. Yi Hong (Wagner Laboratories, McGowan Institute for Regenerative Medicine, Univ. of Pittsburgh) for providing proprietarily formulated PEUU polymer. Dr. P. N. Kumta would like to acknowledge the Edward R. Weidlein Chair Professorship and the Center for Complex Engineered Multifunctional Materials (CCEMM) at the Univ. of Pittsburgh for providing the equipment and facilities needed for ICP analysis.

References

  1. 1.
    Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 13:3299–3305, 2001.CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Y. Song, S. Zhang, J. Li, C. Zhao, and X. Zhang. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation. Biomed. Mater. 6(2):025005, 2011.CrossRefPubMedGoogle Scholar
  3. 3.
    Connolly, E., and L. I. Worthley. Intravenous magnesium. Crit. Care Resusc. 1:162–172, 1999.PubMedGoogle Scholar
  4. 4.
    Faruque, M. K., K. M. Darkwa, C. Y. Watson, J. T. Waterman, and D. Kumar. Synthesis, structure, and biocompatibility of pulsed laser-deposited TiN nanowires for implant applications. J. Biomed. Mater. Res. A. 100(7):1831–1838, 2012.CrossRefPubMedGoogle Scholar
  5. 5.
    Fukunaga, K., P. Kohli, C. Bonnas, L. E. Fredenburgh, and B. D. Levy. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J. Immunol. 174:5003–5039, 2005.CrossRefGoogle Scholar
  6. 6.
    Gerlofs-Nijland, M., et al. Particle induced toxicity is in relation to transition metal and polycyclic aromatic hydrocarbon contents. Environ. Sci. Technol. 43:4729–4736, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Goa, J. C., L. Y. Qiao, and R. L. Xin. Corrosion of bone response of magnesium implants after surface modification by heat-self-assembled monolayer. Front Mater. Sci. 4(2):20–125, 2010.Google Scholar
  8. 8.
    Gourgoulianis, G., A. Chatziparasidid, and P. A. Molyvdas. Magnesium as a relaxing factor of airway smooth muscles. J. Aerosol Med. 14(3):301–307, 2001.CrossRefPubMedGoogle Scholar
  9. 9.
    Guan, J., M. S. Sacks, E. J. Beckman, and W. R. Wagner. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J. Biomed. Mater. Res. 61:493–503, 2002.CrossRefPubMedGoogle Scholar
  10. 10.
    Han, H. S., Y. Y. Kim, Y. C. Kim, S. Y. Cho, P. R. Cha, H. K. Seok, and S. J. Yang. Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model. Met. Mater. Int. 18(2):243–247, 2012.CrossRefGoogle Scholar
  11. 11.
    Hanzi, A., I. Gerber, M. Schinhammer, J. F. Loffler, and P. J. Uggowitzer. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-y-Zn alloys. Acta Biomater. 6:1824–1833, 2010.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim, Y. M., W. Reed, A. G. Lenz, I. Jaspers, R. Silbajoris, H. S. Nick, and J. M. Samet. Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 288(3):L432–L441, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Li, J. N., P. Cao, X. N. Zhang, S. X. Zhang, and Y. H. He. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J. Mater. Sci. 45(22):6038–6045, 2010.CrossRefGoogle Scholar
  14. 14.
    Liev, R., and M. A. Meyers. Biomedical applications of titanium and its alloys. JOM 60:46–49, 2008.Google Scholar
  15. 15.
    McCord, C. P., J. J. Prendergast, S. F. Meek, and G. C. Harrold. Chemical gas gangrene from metallic magnesium. Ind. Med. 11(2):71–79, 1942.Google Scholar
  16. 16.
    Niinomi, M. Recent metallic materials for biomedical applications. Metall Mater. Trans. A. 33A:477–486, 2002.CrossRefGoogle Scholar
  17. 17.
    Pissuwan, D., et al. In vitro cytotoxicity of RAFT polymers. Biomacromolecules 11:412–420, 2010.CrossRefPubMedGoogle Scholar
  18. 18.
    Purnama, A., and H. Hermawan. Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta. Biomater. 6:1800–1807, 2009.CrossRefGoogle Scholar
  19. 19.
    Rude, R. K. Magnesium deficiency: a cause of heterogeneous disease in humans. J. Bone Min. Res. 13:749–758, 1998.CrossRefGoogle Scholar
  20. 20.
    Saito, S. New horizon of bioabsorbable stent. Catheter. Cardiovasc. Interv. 66:595–596, 2005.CrossRefPubMedGoogle Scholar
  21. 21.
    Schubert, U. Inkjet printing of polymer: state of the art and future developments. Adv. Mater. 16:203–213, 2004.CrossRefGoogle Scholar
  22. 22.
    Siverman, R., H. Osborn, H. J. Runge, E. J. Gallagher, W. Chiang, J. Feldman, T. Gaeta, K. Freeman, B. Levin, N. Mancherje, and S. Scharf. IV Magnesium sulfate in the treatment of acute severe asthma: a multicenter randomized controlled trial. Chest 122(2):489–497, 2002.CrossRefGoogle Scholar
  23. 23.
    Song, G., and S. Song. A possible biodegradable magnesium implant material. Adv. Eng. Mater. 9(4):298–302, 2007.CrossRefGoogle Scholar
  24. 24.
    Staiger, M., A. Pietack, J. Huadmai, and G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734, 2006.CrossRefPubMedGoogle Scholar
  25. 25.
    Stuhlinger, H. G. Magnesium in cardiovascular disease. J. Clin. Basic Cardiol. 5(1):55–59, 2002.Google Scholar
  26. 26.
    Von Burkersroda, F., L. Schedl, and A. Gopferich. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(21):4221–4231, 2002.CrossRefGoogle Scholar
  27. 27.
    Witte, F., V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, and H. Windhagen. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563, 2005.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang, J., F. Cui, and S. Lee. Surface modifications of magnesium alloys for biomedical applications. Ann. Biomed. Eng. 39(7):1857–1871, 2011.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Jessica Perkins
    • 1
    • 2
  • Zhigang Xu
    • 2
  • Christopher Smith
    • 2
  • Abhijit Roy
    • 3
    • 5
  • Prashant N. Kumta
    • 3
    • 5
  • Jenora Waterman
    • 4
  • Dawn Conklin
    • 4
  • Salil Desai
    • 1
    • 2
  1. 1.Department of Industrial & Systems EngineeringNorth Carolina A&T State UniversityGreensboroUSA
  2. 2.Engineering Research Center for Revolutionizing Metallic BiomaterialsNorth Carolina A&T State UniversityGreensboroUSA
  3. 3.Department of Bioengineering, Swanson School of EngineeringUniversity of PittsburghPittsburghUSA
  4. 4.Department of Animal SciencesNorth Carolina A&T State UniversityGreensboroUSA
  5. 5.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations