Annals of Biomedical Engineering

, Volume 43, Issue 3, pp 501–514 | Cite as

The Powerful Functions of Peptide-Based Bioactive Matrices for Regenerative Medicine

  • Charles M. Rubert Pérez
  • Nicholas Stephanopoulos
  • Shantanu Sur
  • Sungsoo S. Lee
  • Christina Newcomb
  • Samuel I. Stupp
Article

Abstract

In an effort to develop bioactive matrices for regenerative medicine, peptides have been used widely to promote interactions with cells and elicit desired behaviors in vivo. This paper describes strategies that utilize peptide-based molecules as building blocks to create supramolecular nanostructures that emulate not only the architecture but also the chemistry of the extracellular matrix in mammalian biology. After initiating a desired regenerative response in vivo, the innate biodegradability of these systems allow for the natural biological processes to take over in order to promote formation of a new tissue without leaving a trace of the nonnatural components. These bioactive matrices can either bind or mimic growth factors or other protein ligands to elicit a cellular response, promote specific mechano-biological responses, and also guide the migration of cells with programmed directionality. In vivo applications discussed in this review using peptide-based matrices include the regeneration of axons after spinal cord injury, regeneration of bone, and the formation of blood vessels in ischemic muscle as a therapy in peripheral arterial disease and cardiovascular diseases.

Keywords

Regenerative medicine Tissue engineering Biomaterials Self-assembly Bioactive peptides 

References

  1. 1.
    Abouna, G. M. Organ shortage crisis: problems and possible solutions. Transplant. Proc. 40:34–38, 2008.CrossRefPubMedGoogle Scholar
  2. 2.
    Angeloni, N. L., C. W. Bond, Y. Tang, D. A. Harrington, S. Zhang, S. I. Stupp, K. E. McKenna, and C. A. Podlasek. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32:1091–1101, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Banwell, E. F., E. S. Abelardo, D. J. Adams, M. A. Birchall, A. Corrigan, A. M. Donald, M. Kirkland, L. C. Serpell, M. F. Butler, and D. N. Woolfson. Rational design and application of responsive alpha-helical peptide hydrogels. Nat. Mater. 8:596–600, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Berndt, P., G. B. Fields, and M. Tirrell. Synthetic lipidation of peptides and amino-acids—monolayer structure and properties. J. Am. Chem. Soc. 117:9515–9522, 1995.CrossRefGoogle Scholar
  5. 5.
    Berns, E. J., S. Sur, L. Pan, J. E. Goldberger, S. Suresh, S. Zhang, J. A. Kessler, and S. I. Stupp. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 35:185–195, 2014.CrossRefPubMedGoogle Scholar
  6. 6.
    Boekhoven, J., and S. I. Stupp. 25th anniversary article: supramolecular materials for regenerative medicine. Adv. Mater. 26:1642–1659, 2014.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Capila, I., and R. J. Linhardt. Heparin–protein interactions. Angew. Chem. Int. Ed. 41:391–412, 2002.CrossRefGoogle Scholar
  8. 8.
    Cheng, T. Y., M. H. Chen, W. H. Chang, M. Y. Huang, and T. W. Wang. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34:2005–2016, 2013.CrossRefPubMedGoogle Scholar
  9. 9.
    D’Andrea, L. D., G. Iaccarino, R. Fattorusso, D. Sorriento, C. Carannante, D. Capasso, B. Trimarco, and C. Pedone. Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc. Natl. Acad. Sci. USA 102:14215–14220, 2005.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    D’Andrea, L. D., A. Del Gatto, L. De Rosa, A. Romanelli, and C. Pedone. Peptides targeting angiogenesis related growth factor receptors. Curr. Pharm. Des. 15:2414–2429, 2009.CrossRefPubMedGoogle Scholar
  11. 11.
    Davis, M. E., J. P. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm, S. Zhang, and R. T. Lee. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111:442–450, 2005.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Demirbag, B., P. Y. Huri, G. T. Kose, A. Buyuksungur, and V. Hasirci. Advanced cell therapies with and without scaffolds. Biotechnol. J. 6:1437–1453, 2011.CrossRefPubMedGoogle Scholar
  13. 13.
    Di Lullo, G. A., S. M. Sweeney, J. Korkko, L. Ala-Kokko, and J. D. San Antonio. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277:4223–4231, 2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Dimmeler, S., S. Ding, T. A. Rando, and A. Trounson. Translational strategies and challenges in regenerative medicine. Nat. Med. 20:814–821, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Ellis-Behnke, R. G., Y. X. Liang, S. W. You, D. K. Tay, S. Zhang, K. F. So, and G. E. Schneider. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl. Acad. Sci. USA 103:5054–5059, 2006.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Fishwick, C. W. G., A. J. Beevers, L. M. Carrick, C. D. Whitehouse, A. Aggeli, and N. Boden. Structures of helical β-tapes and twisted ribbons: the role of side-chain interactions on twist and bend behavior. Nano Lett. 3:1475–1479, 2003.CrossRefGoogle Scholar
  17. 17.
    Folkman, J., and M. Klagsbrun. Angiogenic factors. Science 235:442–447, 1987.CrossRefPubMedGoogle Scholar
  18. 18.
    Forbes, S. J., and N. Rosenthal. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med. 20:857–869, 2014.CrossRefPubMedGoogle Scholar
  19. 19.
    Gelain, F., D. Silva, A. Caprini, F. Taraballi, A. Natalello, O. Villa, K. T. Nam, R. N. Zuckermann, S. M. Doglia, and A. Vescovi. BMHP1-derived self-assembling peptides: hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano 5:1845–1859, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Genove, E., C. Shen, S. Zhang, and C. E. Semino. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26:3341–3351, 2005.CrossRefPubMedGoogle Scholar
  21. 21.
    Giano, M. C., D. J. Pochan, and J. P. Schneider. Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32:6471–6477, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.CrossRefPubMedGoogle Scholar
  23. 23.
    Haines-Butterick, L., K. Rajagopal, M. Branco, D. Salick, R. Rughani, M. Pilarz, M. S. Lamm, D. J. Pochan, and J. P. Schneider. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl. Acad. Sci. USA 104:7791–7796, 2007.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Hartgerink, J. D., E. Beniash, and S. I. Stupp. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688, 2001.CrossRefPubMedGoogle Scholar
  25. 25.
    Hernandez-Gordillo, V., and J. Chmielewski. Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds. Biomaterials 35:7363–7373, 2014.CrossRefPubMedGoogle Scholar
  26. 26.
    Horner, P. J., and F. H. Gage. Regenerating the damaged central nervous system. Nature 407:963–970, 2000.CrossRefPubMedGoogle Scholar
  27. 27.
    Jung, J. P., A. K. Nagaraj, E. K. Fox, J. S. Rudra, J. M. Devgun, and J. H. Collier. Co-assembling peptides as defined matrices for endothelial cells. Biomaterials 30:2400–2410, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Khurana, R., M. Simons, J. F. Martin, and I. C. Zachary. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112:1813–1824, 2005.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim, M.-H., M. Park, K. Kang, and I. S. Choi. Neurons on nanometric topographies: insights into neuronal behaviors in vitro. Biomater. Sci. 2:148–155, 2014.CrossRefGoogle Scholar
  30. 30.
    Kong, H. J., and D. J. Mooney. Microenvironmental regulation of biomacromolecular therapies. Nat. Rev. Drug Discov. 6:455–463, 2007.CrossRefPubMedGoogle Scholar
  31. 31.
    Kretsinger, J. K., L. A. Haines, B. Ozbas, D. J. Pochan, and J. P. Schneider. Cytocompatibility of self-assembled β-hairpin peptide hydrogel surfaces. Biomaterials 26:5177–5186, 2005.CrossRefPubMedGoogle Scholar
  32. 32.
    Kumar, V. A., N. L. Taylor, A. A. Jalan, L. K. Hwang, B. K. Wang, and J. D. Hartgerink. A nanostructured synthetic collagen mimic for hemostasis. Biomacromolecules 15:1484–1490, 2014.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee, S. S., B. J. Huang, S. R. Kaltz, S. Sur, C. J. Newcomb, S. R. Stock, R. N. Shah, and S. I. Stupp. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials 34:452–459, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Lee, S. S., E. L. Hsu, M. Mendoza, J. Ghodasra, M. S. Nickoli, A. Ashtekar, M. Polavarapu, J. Babu, R. M. Riaz, J. D. Nicolas, D. Nelson, S. Z. Hashmi, S. R. Kaltz, J. S. Earhart, B. R. Merk, J. S. McKee, S. F. Bairstow, R. N. Shah, W. K. Hsu, and S. I. Stupp. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Healthc. Mater. 2014. doi:10.1002/adhm.201400129.Google Scholar
  35. 35.
    Li, A., A. Hokugo, A. Yalom, E. J. Berns, N. Stephanopoulos, M. T. McClendon, L. A. Segovia, I. Spigelman, S. I. Stupp, and R. Jarrahy. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials 35:8780–8790, 2014.CrossRefPubMedGoogle Scholar
  36. 36.
    Lin, Y. D., C. Y. Luo, Y. N. Hu, M. L. Yeh, Y. C. Hsueh, M. Y. Chang, D. C. Tsai, J. N. Wang, M. J. Tang, E. I. Wei, M. L. Springer, and P. C. Hsieh. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci. Transl. Med. 4:146ra109, 2012.PubMedGoogle Scholar
  37. 37.
    Lutolf, M. P., P. M. Gilbert, and H. M. Blau. Designing materials to direct stem-cell fate. Nature 462:433–441, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Mason, J. M., and K. M. Arndt. Coiled coil domains: stability, specificity, and biological implications. ChemBioChem 5:170–176, 2004.CrossRefPubMedGoogle Scholar
  39. 39.
    Mata, A., Y. B. Geng, K. J. Henrikson, C. Aparicio, S. R. Stock, R. L. Satcher, and S. I. Stupp. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 31:6004–6012, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Matson, J. B., R. H. Zha, and S. I. Stupp. Peptide self-assembly for crafting functional biological materials. Curr. Opin. Solid State Mater. Sci. 15:225–235, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Matsuurua, K. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv. 4:2942–2953, 2014.CrossRefGoogle Scholar
  42. 42.
    McClendon, M. T., and S. I. Stupp. Tubular hydrogels of circumferentially aligned nanofibers to encapsulate and orient vascular cells. Biomaterials 33:5713–5722, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Mehrban, N., E. Abelardo, A. Wasmuth, K. L. Hudson, L. M. Mullen, A. R. Thomson, M. A. Birchall, and D. N. Woolfson. Assessing cellular response to functionalized alpha-helical peptide hydrogels. Adv. Healthc. Mater. 3:1387–1391, 2014.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Moyer, T. J., H. G. Cui, and S. I. Stupp. Tuning nanostructure dimensions with supramolecular twisting. J. Phys. Chem. B 117:4604–4610, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Müller-Mai, C. M., S. I. Stupp, C. Voigt, and U. Gross. Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. J. Biomed. Mater. Res. 29:9–18, 1995.CrossRefPubMedGoogle Scholar
  46. 46.
    Newcomb, C. J., R. Bitton, Y. S. Velichko, M. L. Snead, and S. I. Stupp. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization. Small 8:2195–2202, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    O’Leary, L. E., J. A. Fallas, E. L. Bakota, M. K. Kang, and J. D. Hartgerink. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 3:821–828, 2011.CrossRefPubMedGoogle Scholar
  48. 48.
    Palmer, L. C., C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, and S. I. Stupp. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 108:4754–4783, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Palmgren, B., Y. Jiao, E. Novozhilova, S. I. Stupp, and P. Olivius. Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve. Exp. Neurol. 235:599–609, 2012.CrossRefPubMedGoogle Scholar
  50. 50.
    Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4:160–164, 2012.CrossRefGoogle Scholar
  51. 51.
    Pashuck, E. T., H. G. Cui, and S. I. Stupp. Tuning supramolecular rigidity of peptide fibers through molecular structure. J. Am. Chem. Soc. 132:6041–6046, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Pires, M. M., D. E. Przybyla, and J. Chmielewski. A metal-collagen peptide framework for three-dimensional cell culture. Angew. Chem. Int. Ed. Engl. 48:7813–7817, 2009.CrossRefPubMedGoogle Scholar
  53. 53.
    Rajangam, K., H. A. Behanna, M. J. Hui, X. Q. Han, J. F. Hulvat, J. W. Lomasney, and S. I. Stupp. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett. 6:2086–2090, 2006.CrossRefPubMedGoogle Scholar
  54. 54.
    Reddi, A. H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 16:247–252, 1998.CrossRefPubMedGoogle Scholar
  55. 55.
    Saha, K., A. J. Keung, E. F. Irwin, Y. Li, L. Little, D. V. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Schneider, J. P., D. J. Pochan, B. Ozbas, K. Rajagopal, L. Pakstis, and J. Kretsinger. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124:15030–15037, 2002.CrossRefPubMedGoogle Scholar
  57. 57.
    Semino, C. E., J. R. Merok, G. G. Crane, G. Panagiotakos, and S. Zhang. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71:262–270, 2003.CrossRefPubMedGoogle Scholar
  58. 58.
    Silva, G. A., C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington, J. A. Kessler, and S. I. Stupp. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355, 2004.CrossRefPubMedGoogle Scholar
  59. 59.
    Silver, J., and J. H. Miller. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5:146–156, 2004.CrossRefPubMedGoogle Scholar
  60. 60.
    Stendahl, J. C., L. J. Wang, L. W. Chow, D. B. Kaufman, and S. I. Stupp. Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. Transplantation 86:478–481, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 11:18–25, 2008.CrossRefGoogle Scholar
  62. 62.
    Storrie, H., M. O. Guler, S. N. Abu-Amara, T. Volberg, M. Rao, B. Geiger, and S. I. Stupp. Supramolecular crafting of cell adhesion. Biomaterials 28:4608–4618, 2007.CrossRefPubMedGoogle Scholar
  63. 63.
    Sur, S., E. T. Pashuck, M. O. Guler, M. Ito, S. I. Stupp, and T. Launey. A hybrid nanofiber matrix to control the survival and maturation of brain neurons. Biomaterials 33:545–555, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Sur, S., C. J. Newcomb, M. J. Webber, and S. I. Stupp. Tuning supramolecular mechanics to guide neuron development. Biomaterials 34:4749–4757, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Sur, S., M. O. Guler, M. J. Webber, E. T. Pashuck, M. Ito, S. I. Stupp, and T. Launey. Synergistic regulation of cerebellar Purkinje neuron development by laminin epitopes and collagen on an artificial hybrid matrix construct. Biomater. Sci. 2:903–914, 2014.CrossRefPubMedGoogle Scholar
  66. 66.
    Tongers, J., J. G. Roncalli, and D. W. Losordo. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 118:9–16, 2008.CrossRefPubMedGoogle Scholar
  67. 67.
    Tysseling-Mattiace, V. M., V. Sahni, K. L. Niece, D. Birch, C. Czeisler, M. G. Fehlings, S. I. Stupp, and J. A. Kessler. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 28:3814–3823, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Velichko, Y. S., S. I. Stupp, and M. O. de la Cruz. Molecular simulation study of peptide amphiphile self-assembly. J. Phys. Chem. B 112:2326–2334, 2008.CrossRefPubMedGoogle Scholar
  69. 69.
    Webber, M. J., J. Tongers, C. J. Newcomb, K.-T. Marquardt, J. Bauersachs, D. W. Losordo, and S. I. Stupp. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc. Natl. Acad. Sci. USA 108:13438–13443, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Webber, M. J., E. J. Berns, and S. I. Stupp. Supramolecular nanofibers of peptide amphiphiles for medicine. Israel J. Chem. 53:530–554, 2013.CrossRefGoogle Scholar
  71. 71.
    White, H. D., and D. P. Chew. Acute myocardial infarction. Lancet 372:570–584, 2008.CrossRefPubMedGoogle Scholar
  72. 72.
    Yokoi, H., T. Kinoshita, and S. Zhang. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl. Acad. Sci. USA 102:8414–8419, 2005.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Zhang, S., T. Holmes, C. Lockshin, and A. Rich. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 90:3334–3338, 1993.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Zhang, S., M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton, J. R. Mantei, C. Aparicio, M. O. de la Cruz, and S. I. Stupp. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9:594–601, 2010.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Charles M. Rubert Pérez
    • 1
  • Nicholas Stephanopoulos
    • 1
  • Shantanu Sur
    • 1
    • 3
  • Sungsoo S. Lee
    • 2
  • Christina Newcomb
    • 2
  • Samuel I. Stupp
    • 1
    • 2
  1. 1.Simpson Querrey Institute of BioNanotechnologyNorthwestern UniversityChicagoUSA
  2. 2.Department of Materials and Science & Engineering, Chemistry, Medicine, and Biomedical EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Department of BiologyClarkson UniversityPotsdamUSA

Personalised recommendations