Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 4, pp 929–936 | Cite as

Prediction of Kinematic and Kinetic Performance in a Drop Vertical Jump with Individual Anthropometric Factors in Adolescent Female Athletes: Implications for Cadaveric Investigations

  • Nathaniel A. Bates
  • Gregory D. Myer
  • Timothy E. HewettEmail author
Article

Abstract

Anterior cruciate ligament injuries are common, expensive to repair, and often debilitate athletic careers. Robotic manipulators have evaluated knee ligament biomechanics in cadaveric specimens, but face limitations such as accounting for variation in bony geometry between specimens that may influence dynamic motion pathways. This study examined individual anthropometric measures for significant linear relationships with in vivo kinematic and kinetic performance and determined their implications for robotic studies. Anthropometrics and 3D motion during a 31 cm drop vertical jump task were collected in high school female basketball players. Anthropometric measures demonstrated differential statistical significance in linear regression models relative to kinematic variables (p-range <0.01–0.95). However, none of the anthropometric relationships accounted for clinical variance or provided substantive univariate accuracy needed for clinical prediction algorithms (r 2 < 0.20). Mass and BMI demonstrated models that were significant (p < 0.05) and predictive (r 2 > 0.20) relative to peak flexion moment, peak adduction moment, flexion moment range, abduction moment range, and internal rotation moment range. The current findings indicate that anthropometric measures are less associated with kinematics than with kinetics. Relative to the robotic manipulation of cadaveric limbs, the results do not support the need to normalize kinematic rotations relative to specimen dimensions.

Keywords

Anterior cruciate ligament Robotic manipulator Knee kinematics Anthropometric variability Cadaveric simulation 

Notes

Acknowledgments

This work was supported by NIH Grants R01-AR049735, R01-AR055563, and R01-AR056259. The authors thank the entire Sports Medicine Biodynamics groups at Cincinnati Children’s Hospital and The Ohio State University for their support.

Conflict of interest

There were no conflicts of interest to report in the preparation of this manuscript.

References

  1. 1.
    Bates, N. A., K. R. Ford, G. D. Myer, and T. E. Hewett. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments. Clin. Biomech. 28:459–466, 2013.CrossRefGoogle Scholar
  2. 2.
    Bates, N. A., K. R. Ford, G. D. Myer, and T. E. Hewett. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J. Biomech. 46:1237–1241, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Boguszewski, D. V., J. T. Shearn, C. T. Wagner, and D. L. Butler. Investigating the effects of anterior tibial translation on anterior knee force in the porcine model: is the porcine knee ACL dependent? J. Orthop. Res. 29:641–646, 2011.CrossRefPubMedGoogle Scholar
  4. 4.
    Darcy, S. P., R. H. Kilger, S. L. Woo, and R. E. Debski. Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel non-invasive methodology. J. Biomech. 39:2371–2377, 2006.CrossRefPubMedGoogle Scholar
  5. 5.
    Fleming, B., B. Beynnon, R. Johnson, W. McLeod, and M. Pope. Isometric versus tension measurements. A comparison for the reconstruction of the anterior cruciate ligament. Am. J. Sports Med. 21:82–88, 1993.CrossRefPubMedGoogle Scholar
  6. 6.
    Ford, K. R., G. D. Myer, and T. E. Hewett. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 35:1745–1750, 2003.CrossRefPubMedGoogle Scholar
  7. 7.
    Ford, K. R., G. D. Myer, and T. E. Hewett. Reliability of landing 3d motion analysis: implications for longitudinal analyses. Med. Sci. Sports Exerc. 39:2021–2028, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Gadikota, H. R., J. K. Seon, M. Kozanek, L. S. Oh, T. J. Gill, K. D. Montgomery, and G. Li. Biomechanical comparison of single-tunnel-double-bundle and single-bundle anterior cruciate ligament reconstructions. Am. J. Sports Med. 37:962–969, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Herfat, S. T., D. V. Boguszewski, and J. T. Shearn. Applying simulated in vivo motions to measure human knee and ACL kinetics. Ann. Biomed. Eng. 40:1545–1553, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Hewett, T. E., T. N. Lindenfeld, J. V. Riccobene, and F. R. Noyes. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am. J. Sports Med. 27:699–706, 1999.PubMedGoogle Scholar
  11. 11.
    Hewett, T. E., G. D. Myer, K. R. Ford, R. S. Heidt, Jr., A. J. Colosimo, S. G. McLean, A. J. van den Bogert, M. V. Paterno, and P. Succop. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 33:492–501, 2005.CrossRefPubMedGoogle Scholar
  12. 12.
    Howard, R. A., J. M. Rosvold, S. P. Darcy, D. T. Corr, N. G. Shrive, J. E. Tapper, J. L. Ronsky, J. E. Beveridge, L. L. Marchuk, and C. B. Frank. Reproduction of in vivo motion using a parallel robot. J. Biomech. Eng. 129:743–749, 2007.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim, S., J. Bosque, J. P. Meehan, A. Jamali, and R. Marder. Increase in outpatient knee arthroscopy in the United States: a comparison of national surveys of ambulatory surgery, 1996 and 2006. J. Bone Joint Surg. Am. 93:994–1000, 2011.CrossRefPubMedGoogle Scholar
  14. 14.
    Li, G., T. W. Rudy, M. Sakane, A. Kanamori, C. B. Ma, and S. L. Woo. The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J. Biomech. 32:395–400, 1999.CrossRefPubMedGoogle Scholar
  15. 15.
    Lohmander, L. S., P. M. Englund, L. L. Dahl, and E. M. Roos. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35:1756–1769, 2007.CrossRefPubMedGoogle Scholar
  16. 16.
    Lohmander, L. S., A. Ostenberg, M. Englund, and H. Roos. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 50:3145–3152, 2004.CrossRefPubMedGoogle Scholar
  17. 17.
    Lundberg, H. J., K. C. Foucher, T. P. Andriacchi, and M. A. Wimmer. Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns. J. Biomech. 45:990–996, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    McLean, S. G., X. Huang, A. Su, and A. J. van den Bogert. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. 19:828–838, 2004.CrossRefGoogle Scholar
  19. 19.
    Messina, D. F., W. C. Farney, and J. C. DeLee. The incidence of injury in texas high school basketball. A prospective study among male and female athletes. Am. J. Sports Med. 27:294–299, 1999.PubMedGoogle Scholar
  20. 20.
    Meyer, E. G., and R. C. Haut. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J. Biomech. 41:3377–3383, 2008.CrossRefPubMedGoogle Scholar
  21. 21.
    Myer, G. D., K. R. Ford, J. Khoury, P. Succop, and T. E. Hewett. Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am. J. Sports Med. 38:2025–2033, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Myer, G. D., K. R. Ford, J. Khoury, P. Succop, and T. E. Hewett. Clinical correlates to laboratory measures for use in non-contact anterior cruciate ligament injury risk prediction algorithm. Clin. Biomech. 25:693–699, 2010.CrossRefGoogle Scholar
  23. 23.
    Noyes, F. R., and E. S. Grood. Strength of the anterior cruciate ligament in human and rhesus monkeys. Age and species related changes. J. Bone Joint Surg. 58:1074–1082, 1976.PubMedGoogle Scholar
  24. 24.
    Paterno, M. V., L. C. Schmitt, K. R. Ford, M. J. Rauh, G. D. Myer, B. Huang, and T. E. Hewett. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 38:1968–1978, 2010.CrossRefPubMedGoogle Scholar
  25. 25.
    Perumal, R., A. S. Wexler, and S. A. Binder-Macleod. Mathematical model that predicts lower leg motion in response to electrical stimulation. J. Biomech. 39:2826–2836, 2006.CrossRefPubMedGoogle Scholar
  26. 26.
    Pinczewski, L. A., J. Lyman, L. J. Salmon, V. J. Russell, J. Roe, and J. Linklater. A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am. J. Sports Med. 35:564–574, 2007.CrossRefPubMedGoogle Scholar
  27. 27.
    Salmon, L., V. Russell, T. Musgrove, L. Pinczewski, and K. Refshauge. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21:948–957, 2005.CrossRefPubMedGoogle Scholar
  28. 28.
    Seon, J. K., H. R. Gadikota, J. L. Wu, K. Sutton, T. J. Gill, and G. Li. Comparison of single- and double-bundle anterior cruciate ligament reconstructions in restoration of knee kinematics and anterior cruciate ligament forces. Am. J. Sports Med. 38:1359–1367, 2010.CrossRefPubMedGoogle Scholar
  29. 29.
    Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med. Sci. Sports Exerc. 43:1484–1491, 2011.CrossRefPubMedGoogle Scholar
  30. 30.
    Stijak, L., Z. Blagojevic, G. Santrac-Stijak, G. Spasojevic, R. Herzog, and B. Filipovic. Predicting ACL rupture in the population actively engaged in sports activities based on anatomical risk factors. Orthopedics 34:431, 2011.PubMedGoogle Scholar
  31. 31.
    von Porat, A., E. M. Roos, and H. Roos. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann. Rheum. Dis. 63:269–273, 2004.CrossRefGoogle Scholar
  32. 32.
    Withrow, T. J., L. J. Huston, E. M. Wojtys, and J. A. Ashton-Miller. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin. Biomech. 21:977–983, 2006.CrossRefGoogle Scholar
  33. 33.
    Withrow, T. J., L. J. Huston, E. M. Wojtys, and J. A. Ashton-Miller. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am. J. Sports Med. 34:269–274, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Nathaniel A. Bates
    • 1
    • 2
    • 3
  • Gregory D. Myer
    • 1
    • 4
    • 5
    • 6
  • Timothy E. Hewett
    • 1
    • 2
    • 3
    • 4
    • 7
    Email author
  1. 1.Sports Medicine Biodynamics Center and Human Performance LaboratoryCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.The Sports Health and Performance Institute, OSU Sports MedicineThe Ohio State UniversityColumbusUSA
  4. 4.Department of Pediatrics, College of MedicineUniversity of CincinnatiCincinnatiUSA
  5. 5.Department Orthopaedic Surgery, College of MedicineUniversity of CincinnatiCincinnatiUSA
  6. 6.The Micheli Center for Sports Injury PreventionBostonUSA
  7. 7.Departments of Physiology and Cell Biology, Orthopaedic Surgery, Family Medicine and Biomedical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations