Prediction of Kinematic and Kinetic Performance in a Drop Vertical Jump with Individual Anthropometric Factors in Adolescent Female Athletes: Implications for Cadaveric Investigations
- 540 Downloads
- 4 Citations
Abstract
Anterior cruciate ligament injuries are common, expensive to repair, and often debilitate athletic careers. Robotic manipulators have evaluated knee ligament biomechanics in cadaveric specimens, but face limitations such as accounting for variation in bony geometry between specimens that may influence dynamic motion pathways. This study examined individual anthropometric measures for significant linear relationships with in vivo kinematic and kinetic performance and determined their implications for robotic studies. Anthropometrics and 3D motion during a 31 cm drop vertical jump task were collected in high school female basketball players. Anthropometric measures demonstrated differential statistical significance in linear regression models relative to kinematic variables (p-range <0.01–0.95). However, none of the anthropometric relationships accounted for clinical variance or provided substantive univariate accuracy needed for clinical prediction algorithms (r 2 < 0.20). Mass and BMI demonstrated models that were significant (p < 0.05) and predictive (r 2 > 0.20) relative to peak flexion moment, peak adduction moment, flexion moment range, abduction moment range, and internal rotation moment range. The current findings indicate that anthropometric measures are less associated with kinematics than with kinetics. Relative to the robotic manipulation of cadaveric limbs, the results do not support the need to normalize kinematic rotations relative to specimen dimensions.
Keywords
Anterior cruciate ligament Robotic manipulator Knee kinematics Anthropometric variability Cadaveric simulationNotes
Acknowledgments
This work was supported by NIH Grants R01-AR049735, R01-AR055563, and R01-AR056259. The authors thank the entire Sports Medicine Biodynamics groups at Cincinnati Children’s Hospital and The Ohio State University for their support.
Conflict of interest
There were no conflicts of interest to report in the preparation of this manuscript.
References
- 1.Bates, N. A., K. R. Ford, G. D. Myer, and T. E. Hewett. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments. Clin. Biomech. 28:459–466, 2013.CrossRefGoogle Scholar
- 2.Bates, N. A., K. R. Ford, G. D. Myer, and T. E. Hewett. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J. Biomech. 46:1237–1241, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
- 3.Boguszewski, D. V., J. T. Shearn, C. T. Wagner, and D. L. Butler. Investigating the effects of anterior tibial translation on anterior knee force in the porcine model: is the porcine knee ACL dependent? J. Orthop. Res. 29:641–646, 2011.CrossRefPubMedGoogle Scholar
- 4.Darcy, S. P., R. H. Kilger, S. L. Woo, and R. E. Debski. Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel non-invasive methodology. J. Biomech. 39:2371–2377, 2006.CrossRefPubMedGoogle Scholar
- 5.Fleming, B., B. Beynnon, R. Johnson, W. McLeod, and M. Pope. Isometric versus tension measurements. A comparison for the reconstruction of the anterior cruciate ligament. Am. J. Sports Med. 21:82–88, 1993.CrossRefPubMedGoogle Scholar
- 6.Ford, K. R., G. D. Myer, and T. E. Hewett. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 35:1745–1750, 2003.CrossRefPubMedGoogle Scholar
- 7.Ford, K. R., G. D. Myer, and T. E. Hewett. Reliability of landing 3d motion analysis: implications for longitudinal analyses. Med. Sci. Sports Exerc. 39:2021–2028, 2007.CrossRefPubMedGoogle Scholar
- 8.Gadikota, H. R., J. K. Seon, M. Kozanek, L. S. Oh, T. J. Gill, K. D. Montgomery, and G. Li. Biomechanical comparison of single-tunnel-double-bundle and single-bundle anterior cruciate ligament reconstructions. Am. J. Sports Med. 37:962–969, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
- 9.Herfat, S. T., D. V. Boguszewski, and J. T. Shearn. Applying simulated in vivo motions to measure human knee and ACL kinetics. Ann. Biomed. Eng. 40:1545–1553, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
- 10.Hewett, T. E., T. N. Lindenfeld, J. V. Riccobene, and F. R. Noyes. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am. J. Sports Med. 27:699–706, 1999.PubMedGoogle Scholar
- 11.Hewett, T. E., G. D. Myer, K. R. Ford, R. S. Heidt, Jr., A. J. Colosimo, S. G. McLean, A. J. van den Bogert, M. V. Paterno, and P. Succop. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 33:492–501, 2005.CrossRefPubMedGoogle Scholar
- 12.Howard, R. A., J. M. Rosvold, S. P. Darcy, D. T. Corr, N. G. Shrive, J. E. Tapper, J. L. Ronsky, J. E. Beveridge, L. L. Marchuk, and C. B. Frank. Reproduction of in vivo motion using a parallel robot. J. Biomech. Eng. 129:743–749, 2007.CrossRefPubMedGoogle Scholar
- 13.Kim, S., J. Bosque, J. P. Meehan, A. Jamali, and R. Marder. Increase in outpatient knee arthroscopy in the United States: a comparison of national surveys of ambulatory surgery, 1996 and 2006. J. Bone Joint Surg. Am. 93:994–1000, 2011.CrossRefPubMedGoogle Scholar
- 14.Li, G., T. W. Rudy, M. Sakane, A. Kanamori, C. B. Ma, and S. L. Woo. The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J. Biomech. 32:395–400, 1999.CrossRefPubMedGoogle Scholar
- 15.Lohmander, L. S., P. M. Englund, L. L. Dahl, and E. M. Roos. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35:1756–1769, 2007.CrossRefPubMedGoogle Scholar
- 16.Lohmander, L. S., A. Ostenberg, M. Englund, and H. Roos. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 50:3145–3152, 2004.CrossRefPubMedGoogle Scholar
- 17.Lundberg, H. J., K. C. Foucher, T. P. Andriacchi, and M. A. Wimmer. Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns. J. Biomech. 45:990–996, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
- 18.McLean, S. G., X. Huang, A. Su, and A. J. van den Bogert. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. 19:828–838, 2004.CrossRefGoogle Scholar
- 19.Messina, D. F., W. C. Farney, and J. C. DeLee. The incidence of injury in texas high school basketball. A prospective study among male and female athletes. Am. J. Sports Med. 27:294–299, 1999.PubMedGoogle Scholar
- 20.Meyer, E. G., and R. C. Haut. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J. Biomech. 41:3377–3383, 2008.CrossRefPubMedGoogle Scholar
- 21.Myer, G. D., K. R. Ford, J. Khoury, P. Succop, and T. E. Hewett. Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am. J. Sports Med. 38:2025–2033, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
- 22.Myer, G. D., K. R. Ford, J. Khoury, P. Succop, and T. E. Hewett. Clinical correlates to laboratory measures for use in non-contact anterior cruciate ligament injury risk prediction algorithm. Clin. Biomech. 25:693–699, 2010.CrossRefGoogle Scholar
- 23.Noyes, F. R., and E. S. Grood. Strength of the anterior cruciate ligament in human and rhesus monkeys. Age and species related changes. J. Bone Joint Surg. 58:1074–1082, 1976.PubMedGoogle Scholar
- 24.Paterno, M. V., L. C. Schmitt, K. R. Ford, M. J. Rauh, G. D. Myer, B. Huang, and T. E. Hewett. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 38:1968–1978, 2010.CrossRefPubMedGoogle Scholar
- 25.Perumal, R., A. S. Wexler, and S. A. Binder-Macleod. Mathematical model that predicts lower leg motion in response to electrical stimulation. J. Biomech. 39:2826–2836, 2006.CrossRefPubMedGoogle Scholar
- 26.Pinczewski, L. A., J. Lyman, L. J. Salmon, V. J. Russell, J. Roe, and J. Linklater. A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am. J. Sports Med. 35:564–574, 2007.CrossRefPubMedGoogle Scholar
- 27.Salmon, L., V. Russell, T. Musgrove, L. Pinczewski, and K. Refshauge. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21:948–957, 2005.CrossRefPubMedGoogle Scholar
- 28.Seon, J. K., H. R. Gadikota, J. L. Wu, K. Sutton, T. J. Gill, and G. Li. Comparison of single- and double-bundle anterior cruciate ligament reconstructions in restoration of knee kinematics and anterior cruciate ligament forces. Am. J. Sports Med. 38:1359–1367, 2010.CrossRefPubMedGoogle Scholar
- 29.Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med. Sci. Sports Exerc. 43:1484–1491, 2011.CrossRefPubMedGoogle Scholar
- 30.Stijak, L., Z. Blagojevic, G. Santrac-Stijak, G. Spasojevic, R. Herzog, and B. Filipovic. Predicting ACL rupture in the population actively engaged in sports activities based on anatomical risk factors. Orthopedics 34:431, 2011.PubMedGoogle Scholar
- 31.von Porat, A., E. M. Roos, and H. Roos. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann. Rheum. Dis. 63:269–273, 2004.CrossRefGoogle Scholar
- 32.Withrow, T. J., L. J. Huston, E. M. Wojtys, and J. A. Ashton-Miller. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin. Biomech. 21:977–983, 2006.CrossRefGoogle Scholar
- 33.Withrow, T. J., L. J. Huston, E. M. Wojtys, and J. A. Ashton-Miller. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am. J. Sports Med. 34:269–274, 2006.CrossRefPubMedGoogle Scholar