Annals of Biomedical Engineering

, Volume 43, Issue 4, pp 1036–1050 | Cite as

Mechanical Stimulation of Bone Marrow In Situ Induces Bone Formation in Trabecular Explants

  • E. BirminghamEmail author
  • T. C. Kreipke
  • E. B. Dolan
  • T. R. Coughlin
  • P. Owens
  • L. M. McNamara
  • G. L. Niebur
  • P. E. McHugh


Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters.


Trabecular bone Bone marrow Shear stress Low magnitude high frequency loading Vibration Mechanobiology 



The authors would like to acknowledge funding from the Irish Research Council, under the EMBARK program, U.S. National Science Foundation grant CMMI 1100207, Science Foundation Ireland under the Short Term Travel Fellowship and the ORS under the Collaborative Exchange Award. The authors would also like to acknowledge M.A. Varsanik for her assistance with the histology images.


  1. 1.
    Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell. Sci. 122:546–553, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Bacabac, R. G., T. H. Smit, J. J. W. A. Van Loon, B. Z. Doulabi, M. Helder, and J. Klein-Nulend. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 20:858–864, 2006.CrossRefPubMedGoogle Scholar
  3. 3.
    Bakker, A. D., M. Joldersma, J. Klein-Nulend, and E. H. Burger. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am. J. Physiol. Endocrinol. Metab. 285:E608–E613, 2003.CrossRefPubMedGoogle Scholar
  4. 4.
    Birmingham, E., G. L. Niebur, P. E. McHugh, G. Shaw, F. P. Barry, and L. M. McNamara. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell. Mater. 23:13–27, 2012.PubMedGoogle Scholar
  5. 5.
    Birmingham, E., J. A. Grogan, G. L. Niebur, L. M. McNamara, and P. E. McHugh. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann. Biomed. Eng. 41:814–826, 2013.CrossRefPubMedGoogle Scholar
  6. 6.
    Bonewald, L. F., and M. L. Johnson. Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Brouwers, J. E. M., B. van Rietbergen, K. Ito, and R. Huiskes. Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J. Orthop. Res. 28:62–69, 2010.PubMedGoogle Scholar
  8. 8.
    Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. H 203:71–75, 1989.CrossRefPubMedGoogle Scholar
  9. 9.
    Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J. 13(Suppl):S101–S112, 1999.PubMedGoogle Scholar
  10. 10.
    Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In Vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410, 1996.CrossRefPubMedGoogle Scholar
  11. 11.
    Cartmell, S. H., B. D. Porter, A. J. García, and R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9:1197–1203, 2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Castillo, A. B., and C. R. Jacobs. Mesenchymal stem cell mechanobiology. Curr. Osteoporos Rep. 8:98–104, 2010.CrossRefPubMedGoogle Scholar
  13. 13.
    Chan, M. E., G. Uzer, and C. T. Rubin. The potential benefits and inherent risks of vibration as a non-drug therapy for the prevention and treatment of osteoporosis. Curr. Osteoporos Rep. 11:36–44, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Coughlin, T. R., and G. L. Niebur. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J. Biomech. 45:2222–2229, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Cowin, S. C. Bone Mechanics Handbook (2nd ed.). New York: Taylor & Francis, p. 981, 2001.Google Scholar
  16. 16.
    Dallas, S. L., G. Zaman, M. J. Pead, and L. E. Lanyon. Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. J. Bone Miner. Res. 8:251–259, 1993.CrossRefPubMedGoogle Scholar
  17. 17.
    David, V., A. Guignandon, A. Martin, L. Malaval, M.-H. Lafage-Proust, A. Rattner, V. Mann, B. Noble, D. B. Jones, and L. Vico. Ex vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng. Part. A 14:117–126, 2008.PubMedGoogle Scholar
  18. 18.
    Davies, C. M., D. B. Jones, M. J. Stoddart, K. Koller, E. Smith, C. W. Archer, and R. G. Richards. Mechanically loaded ex vivo bone culture system “Zetos”: systems and culture preparation. Eur. Cell Mater. 11:57–75, 2006; (discussion 75).PubMedGoogle Scholar
  19. 19.
    Dickerson, D. A., E. A. Sander, and E. A. Nauman. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech. Model Mechanobiol. 7:191–202, 2008.CrossRefPubMedGoogle Scholar
  20. 20.
    Doube, M., M. M. Kłosowski, I. Arganda-Carreras, F. P. Cordelières, R. P. Dougherty, J. S. Jackson, B. Schmid, J. R. Hutchinson, and S. J. Shefelbine. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Endres, S., M. Kratz, S. Wunsch, and D. B. Jones. Zetos: a culture loading system for trabecular bone. Investigation of different loading signal intensities on bovine bone cylinders. J. Musculoskelet. Neuronal Interact. 9:173–183, 2009.PubMedGoogle Scholar
  22. 22.
    Fuchs, E., T. Tumbar, and G. Guasch. Socializing with the neighbors: stem cells and their niche. Cell 116:769–778, 2004.CrossRefPubMedGoogle Scholar
  23. 23.
    Garman, R., G. Gaudette, L.-R. Donahue, C. Rubin, and S. Judex. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J. Orthop. Res. 25:732–740, 2007.CrossRefPubMedGoogle Scholar
  24. 24.
    Garrison, J. G., C. L. Slaboch, and G. L. Niebur. Density and architecture have greater effects on the toughness of trabecular bone than damage. Bone 44:924–929, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Grellier, M., R. Bareille, C. Bourget, and J. Amédée. Responsiveness of human bone marrow stromal cells to shear stress. J. Tissue Eng. Regen. Med. 3:302–309, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36:1978–1991, 2008.CrossRefPubMedGoogle Scholar
  27. 27.
    Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64:295–312, 1997.CrossRefPubMedGoogle Scholar
  28. 28.
    Jones, D. B., E. Broeckmann, T. Pohl, and E. L. Smith. Development of a mechanical testing and loading system for trabecular bone studies for long term culture. Eur. Cell Mater. 5:48–59, 2003; (discussion 59–60).PubMedGoogle Scholar
  29. 29.
    Judex, S., S. Boyd, Y.-X. Qin, S. Turner, K. Ye, R. Müller, and C. Rubin. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann. Biomed. Eng. 31:12–20, 2003.CrossRefPubMedGoogle Scholar
  30. 30.
    Judex, S., X. Lei, D. Han, and C. Rubin. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J. Biomech. 40:1333–1339, 2007.CrossRefPubMedGoogle Scholar
  31. 31.
    Justesen, J., K. Stenderup, E. N. Ebbesen, L. Mosekilde, T. Steiniche, and M. Kassem. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171, 2001.CrossRefPubMedGoogle Scholar
  32. 32.
    Kiiski, J., A. Heinonen, T. L. Järvinen, P. Kannus, and H. Sievänen. Transmission of vertical whole body vibration to the human body. J. Bone Miner. Res. 23:1318–1325, 2008.CrossRefPubMedGoogle Scholar
  33. 33.
    Kreke, M. R., W. R. Huckle, and A. S. Goldstein. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055, 2005.CrossRefPubMedGoogle Scholar
  34. 34.
    Kreke, M. R., L. A. Sharp, Y. W. Lee, and A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. Part A 14:529–537, 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    Kuhn, N. Z., and R. S. Tuan. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J. Cell. Physiol 222:268–277, 2010.CrossRefPubMedGoogle Scholar
  36. 36.
    Lan, S., S. Luo, B. K. Huh, A. Chandra, A. R. Altman, L. Qin, and X. S. Liu. 3D image registration is critical to ensure accurate detection of longitudinal changes in trabecular bone density, microstructure, and stiffness measurements in rat tibiae by in vivo microcomputed tomography (μCT). Bone 56:83–90, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Liney, G. P., C. P. Bernard, D. J. Manton, L. W. Turnbull, and C. M. Langton. Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J. Magn. Reson. Imaging 26:787–793, 2007.CrossRefPubMedGoogle Scholar
  38. 38.
    Mann, V., C. Huber, G. Kogianni, D. Jones, and B. Noble. The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J. Musculoskelet. Neuronal Interact. 6:408–417, 2006.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Manske, S. L., C. A. Good, R. F. Zernicke, and S. K. Boyd. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following Botulinum toxin injection. PLoS ONE 7(5):e36486, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Parfitt, A. M. The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption—bone flow theory. Clin. Orthop. Relat. Res. 127:236–247, 1977.PubMedGoogle Scholar
  41. 41.
    Pitsillides, A. A., S. C. Rawlinson, R. F. Suswillo, S. Bourrin, G. Zaman, and L. E. Lanyon. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J. 9:1614–1622, 1995.PubMedGoogle Scholar
  42. 42.
    Qin, Y. X., H. Lam, S. Ferreri, and C. Rubin. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10:12–24, 2010.PubMedGoogle Scholar
  43. 43.
    Riddle, R. C., A. F. Taylor, D. C. Genetos, and H. J. Donahue. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am. J. Physiol. Cell Physiol. 290:C776–C784, 2006.CrossRefPubMedGoogle Scholar
  44. 44.
    Rosen, C. J., and M. L. Bouxsein. Mechanisms of disease: is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol. 2:35–43, 2006.CrossRefPubMedGoogle Scholar
  45. 45.
    Rubin, C. T., and L. E. Lanyon. Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66:397–402, 1984.PubMedGoogle Scholar
  46. 46.
    Rubin, C., A. S. Turner, S. Bain, C. Mallinckrodt, and K. McLeod. Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604, 2001.CrossRefPubMedGoogle Scholar
  47. 47.
    Rubin, C., G. Xu, and S. Judex. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J. 15:2225–2229, 2001.CrossRefPubMedGoogle Scholar
  48. 48.
    Rubin, C., A. S. Turner, C. Mallinckrodt, C. Jerome, K. McLeod, and S. Bain. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30:445–452, 2002.CrossRefPubMedGoogle Scholar
  49. 49.
    Rubin, C., A. S. Turner, R. Müller, E. Mittra, K. McLeod, W. Lin, and Y.-X. Qin. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J. Bone Miner. Res. 17:349–357, 2002.CrossRefPubMedGoogle Scholar
  50. 50.
    Rubin, C., R. Recker, D. Cullen, J. Ryaby, J. McCabe, and K. McLeod. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J. Bone Miner. Res. 19:343–351, 2004.CrossRefPubMedGoogle Scholar
  51. 51.
    Schulte, F. A., F. M. Lambers, G. Kuhn, and R. Müller. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone 48:433–442, 2011.CrossRefPubMedGoogle Scholar
  52. 52.
    Sharp, L. A., Y. W. Lee, and A. S. Goldstein. Effect of low-frequency pulsatile flow on expression of osteoblastic genes by bone marrow stromal cells. Ann. Biomed. Eng. 37:445–453, 2009.CrossRefPubMedGoogle Scholar
  53. 53.
    Simulia, D. S. Abaqus 6.12 Theory Manual. Providence, RI: DS SIMULIA Corp., 2012.Google Scholar
  54. 54.
    Turner, C. H., Y. Takano, I. Owan, and G. A. Murrell. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am. J. Physio.l Endocrinol. Metab. 270:E634–E639, 1996.Google Scholar
  55. 55.
    Uzer, G., S. L. Manske, M. E. Chan, F.-P. Chiang, C. T. Rubin, M. D. Frame, and S. Judex. Separating fluid shear stress from acceleration during vibrations in vitro: identification of mechanical signals modulating the cellular response. Cell. Mol. Bioeng. 5:266–276, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Van de Berg, B. C., J. Malghem, F. E. Lecouvet, and B. Maldague. Magnetic resonance imaging of the normal bone marrow. Skelet. Radiol. 27:471–483, 1998.CrossRefGoogle Scholar
  57. 57.
    Verschueren, S. M. P., M. Roelants, C. Delecluse, S. Swinnen, D. Vanderschueren, and S. Boonen. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J. Bone Miner. Res. 19:352–359, 2004.CrossRefPubMedGoogle Scholar
  58. 58.
    Watt, F. M., and B. L. Hogan. Out of Eden: stem cells and their niches. Science 287:1427–1430, 2000.CrossRefPubMedGoogle Scholar
  59. 59.
    Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112:1796–1808, 2003.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Xie, L., J. M. Jacobson, E. S. Choi, B. Busa, L. R. Donahue, L. M. Miller, C. T. Rubin, and S. Judex. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39:1059–1066, 2006.CrossRefPubMedGoogle Scholar
  61. 61.
    Yeung, D. K. W., J. F. Griffith, G. E. Antonio, F. K. H. Lee, J. Woo, and P. C. Leung. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J. Magn. Reson. Imaging 22:279–285, 2005.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhong, Z., and O. Akkus. Effects of age and shear rate on the rheological properties of human yellow bone marrow. Biorheology 48:89–97, 2011.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • E. Birmingham
    • 1
    Email author
  • T. C. Kreipke
    • 2
  • E. B. Dolan
    • 1
  • T. R. Coughlin
    • 2
  • P. Owens
    • 3
  • L. M. McNamara
    • 1
  • G. L. Niebur
    • 2
  • P. E. McHugh
    • 1
  1. 1.Biomechanics Research Centre (BMEC), Mechanical and Biomedical Engineering, College of Engineering and InformaticsNational University of Ireland GalwayGalwayIreland
  2. 2.Bioengineering Graduate ProgramUniversity of Notre DameNotre DameUSA
  3. 3.Centre for Microscopy and Imaging NUIGNational University of Ireland GalwayGalwayIreland

Personalised recommendations