Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 4, pp 1014–1023 | Cite as

The Combination of Electric Current and Copper Promotes Neuronal Differentiation of Adipose-Derived Stem Cells

  • L. Jaatinen
  • S. Salemi
  • S. Miettinen
  • J. Hyttinen
  • D. Eberli
Article

Abstract

Damage to the nervous system can be caused by several types of insults, and it always has a great effect on the life of an individual. Due to the limited availability of neural transplants, alternative approaches for neural regeneration must be developed. Stem cells have a great potential to support neuronal regeneration. Human adipose-derived stem cells (hADSCs) have gained increasing interest in the fields of regenerative medicine due to their multilineage potential and easy harvest compared to other stem cells. In this study, we present a growth factor-free method for the differentiation of hADSCs toward neuron-like cells. We investigated the effect of electric current and copper on neuronal differentiation. We analyzed the morphological changes, the mRNA and protein expression levels in the stimulated cells and showed that the combination of current and copper induces stem cell differentiation toward the neuronal lineage with elongation of the cells and the upregulation of neuron-specific genes and proteins. The induction of the neuronal differentiation of hADSCs by electric field and copper may offer a novel approach for stem cell differentiation and may be a useful tool for safe stem cell-based therapeutic applications.

Keywords

Adipose-derived stem cell Electric current Copper Differentiation Neurons 

Notes

Acknowledgments

This work was mainly funded by the Finnish Cultural Foundation. The work was performed in the Laboratory of Biosensors and Bioelectronics at the ETH Zurich, Switzerland and we are most grateful of their scientific and financial support.

References

  1. 1.
    Abrous, D. N., M. Koehl, and M. L. E. Moal. Adult neurogenesis: from precursors to network and physiology. Physiol. Rev., 523–569, 2005. doi: 10.1152/physrev.00055.2003.
  2. 2.
    Anghileri, E., S. Marconi, A. Pignatelli, P. Cifelli, M. Galié, A. Sbarbati, M. Krampera, O. Belluzzi, and B. Bonetti. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 17:909–916, 2008.CrossRefPubMedGoogle Scholar
  3. 3.
    Ariza, C. A., A. T. Fleury, C. J. Tormos, V. Petruk, S. Chawla, J. Oh, D. S. Sakaguchi, and S. K. Mallapragada. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev. 6:585–600, 2010.CrossRefPubMedGoogle Scholar
  4. 4.
    Birkaya, B., and J. M. Aletta. NGF promotes copper accumulation required for optimum neurite outgrowth and protein methylation. J. Neurobiol. 63:49–61, 2005.CrossRefPubMedGoogle Scholar
  5. 5.
    Cardozo, A. J., D. E. Gómez, and P. F. Argibay. Neurogenic differentiation of human adipose-derived stem cells: relevance of different signaling molecules, transcription factors, and key marker genes. Gene 511:427–436, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    Choi, S. A., J. Y. Lee, K.-C. Wang, J. H. Phi, S. H. Song, J. Song, and S.-K. Kim. Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur. J. Cancer 48:129–137, 2012.CrossRefPubMedGoogle Scholar
  7. 7.
    Gimble, J. M., A. J. Katz, and B. A. Bunnell. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100:1249–1260, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Gutierrez-Aranda, I., V. Ramos-Mejia, C. Bueno, M. Munoz-Lopez, P. J. Real, A. Mácia, L. Sanchez, G. Ligero, J. L. Garcia-Parez, and P. Menendez. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568–1570, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Hammerick, K. E., M. T. Longaker, and F. B. Prinz. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 397:12–17, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Haremaki, T., S. T. Fraser, Y.-M. Kuo, M. H. Baron, and D. C. Weinstein. Vertebrate Ctr1 coordinates morphogenesis and progenitor cell fate and regulates embryonic stem cell differentiation. Proc. Natl. Acad. Sci. USA 104:12029–12034, 2007.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Hentze, H., P. L. Soong, S. T. Wang, B. W. Phillips, T. C. Putti, and N. R. Dunn. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2:198–210, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Horning, M. S., and P. Q. Trombley. Zinc and Copper influence excitability of rat olfactory bulb neurons by multiple mechanisms zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J. Neurophysiol. 86(4):1652–1660, 2001.PubMedGoogle Scholar
  13. 13.
    Hronik-Tupaj, M., and D. L. Kaplan. A review of the responses of two- and three-dimensional engineered tissues to electric fields. Tissue Eng. Part B. 18(3):167–180, 2012.CrossRefGoogle Scholar
  14. 14.
    Hunt, D. M. Copper and neurological function. Ciba Found. Symp. 79:247–266, 1980.PubMedGoogle Scholar
  15. 15.
    Jang, S., H.-H. Cho, Y.-B. Cho, J.-S. Park, and H.-S. Jeong. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol. 11:25, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Jiang, Y., D. Henderson, M. Blackstad, A. Chen, R. F. Miller, and C. M. Verfaillie. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc. Natl. Acad. Sci. USA 100(1):11854–11860, 2003.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Kaur, S., P. Lyte, M. Garay, F. Liebel, Y. Sun, J.-C. Liu, and M. D. Southall. Galvanic zinc-copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin. Arch. Dermatol. Res. 303:551–562, 2011.CrossRefPubMedGoogle Scholar
  18. 18.
    Kim, H.-Y. Novel metabolism of docosahexaenoic acid in neural cells. J. Biol. Chem. 282:18661–18665, 2007.CrossRefPubMedGoogle Scholar
  19. 19.
    Krampera, M., S. Marconi, A. Pasini, M. Galiè, G. Rigotti, F. Mosna, M. Tinelli, L. Lovato, E. Anghileri, A. Andreini, G. Pizzolo, A. Sbarbati, and B. Bonetti. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 40:382–390, 2007.CrossRefPubMedGoogle Scholar
  20. 20.
    Lebonvallet, N., N. Boulais, C. Le Gall, J. Chéret, U. Pereira, O. Mignen, V. Bardey, C. Jeanmaire, L. Danoux, G. Pauly, and L. Misery. Characterization of neurons from adult human skin-derived precursors in serum-free medium : a PCR array and immunocytological analysis. Exp. Dermatol. 21:195–200, 2012.CrossRefPubMedGoogle Scholar
  21. 21.
    Lindroos, B., S. Boucher, L. Chase, H. Kuokkanen, H. Huhtala, R. Haataja, M. Vemuri, R. Suuronen, and S. Miettinen. Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 11:958–972, 2009.CrossRefPubMedGoogle Scholar
  22. 22.
    Lu, P., A. Blesch, and M. H. Tuszynski. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 77:174–191, 2004.CrossRefPubMedGoogle Scholar
  23. 23.
    Madsen, E., and J. D. Gitlin. Copper and iron disorders of the brain. Annu. Rev. Neurosci. 30:317–337, 2007.CrossRefPubMedGoogle Scholar
  24. 24.
    Matos, M. A., and M. T. Cicerone. Alternating current electric field effects on neural stem cell viability and differentiation. Biotechnol. Prog. 26:664–670, 2010.CrossRefPubMedGoogle Scholar
  25. 25.
    McCaig, C. D., B. Song, and A. M. Rajnicek. Electrical dimensions in cell science. J. Cell Sci. 122:4267–4276, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Monson, C. F., X. Cong, A. D. Robison, H. P. Pace, C. Liu, M. F. Poyton, and P. S. Cremer. Phosphatidylserine reversibly binds Cu2+ with extremely high affinity. J. Am. Chem. Soc. 134:7773–7779, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Nalbandyan, R. M. An overview copper in brain. Neurochem. Res. 8:1211–1232, 1983.CrossRefPubMedGoogle Scholar
  28. 28.
    Neuhuber, B., G. Gallo, L. Howard, L. Kostura, A. Mackay, and I. Fischer. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res. 77:192–204, 2004.CrossRefPubMedGoogle Scholar
  29. 29.
    Poo, M. In situ electrophoresis of membrane components. Annu. Rev. Biophys. Bioeng. 10:245–276, 1981.CrossRefPubMedGoogle Scholar
  30. 30.
    Rae, T. D. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808, 1999.CrossRefPubMedGoogle Scholar
  31. 31.
    Rodriguez, J. P., S. Rios, and M. Gonzales. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J. Cell. Biochem. 100:92–100, 2002.CrossRefGoogle Scholar
  32. 32.
    Rothstein, J. D., M. Dykes-Hoberg, L. B. Corson, M. Becker, D. W. Cleveland, D. L. Price, V. C. Culotta, and P. C. Wong. The copper chaperone CCS is abundant in neurons and astrocytes in human and rodent brain. J. Neurochem. 72:422–429, 1999.CrossRefPubMedGoogle Scholar
  33. 33.
    Safford, K. M., K. C. Hicok, S. D. Safford, Y.-D. C. Halvorsen, W. O. Wilkison, J. M. Gimble, and H. E. Rice. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 294:371–379, 2002.CrossRefPubMedGoogle Scholar
  34. 34.
    Sanchez-Ramos, J., S. Song, F. Cardozo-Pelaez, C. Hazzi, T. Stedeford, A. Willing, T. B. Freeman, S. Saporta, W. Janssen, N. Patel, D. R. Cooper, and P. R. Sanberg. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164:247–256, 2000.CrossRefPubMedGoogle Scholar
  35. 35.
    Sato, M., K. Ohtomo, T. Daimon, T. Sugiyama, and K. Iijima. Localization of copper to afferent terminals in rat locus ceruleus, in contrast to mitochondrial copper in cerebellum. J. Histochem. Cytochem. 42:1585–1591, 1994.CrossRefPubMedGoogle Scholar
  36. 36.
    Sauer, H., G. Rahimi, J. Hescheler, and M. Wartenberg. Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J. Cell. Biochem. 75:710–723, 1999.CrossRefPubMedGoogle Scholar
  37. 37.
    Serena, E., E. Figallo, N. Tandon, C. Cannizzaro, S. Gerecht, N. Elvassore, and G. Vunjak-Novakovic. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp. Cell Res. 315:3611–3619, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Tandon, N., B. Goh, A. Marsano, P.-H. G. Chao, C. Montouri-Sorrentino, J. Gimble, and G. Vunjak-Novakovic. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conference Proceedings of IEEE Engineering in Medicine and Biological Society, 2009, pp. 6517–6521.Google Scholar
  39. 39.
    Tandon, N., E. Cimetta, A. Villasante, N. Kupferstein, M. D. Southall, A. Fassih, J. Xie, Y. Sun, and G. Vunjak-Novakovic. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway. Exp. Cell Res. 320:79–91, 2014.CrossRefPubMedGoogle Scholar
  40. 40.
    Thrivikraman, G., G. Madras, and B. Basu. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials 35:6219–6235, 2014.CrossRefPubMedGoogle Scholar
  41. 41.
    Titushkin, I. A, and M. R. Cho. Controlling cellular biomechanics of human mesenchymal stem cells. Conference Proceedings of IEEE Engineering in Medicine and Biology Society 2009, pp. 2090–2093.Google Scholar
  42. 42.
    Weiser, T., and M. Wienrich. The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res. 742:211–218, 1996.CrossRefPubMedGoogle Scholar
  43. 43.
    Yamada, M., K. Tanemura, S. Okada, A. Iwanami, M. Nakamura, H. Mizuno, M. Ozawa, R. Ohyama-Goto, N. Kitamura, M. Kawano, K. Tan-Takeuchi, C. Ohtsuka, A. Miyawaki, A. Takashima, M. Ogawa, Y. Toyama, H. Okano, and T. Kondo. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells 25:562–570, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Yang, C., L. Sun, X. Li, L. Xie, M. Yu, L. Feng, Z. Jiang, W. Guo, and W. Tian. The potential of dental stem cells differentiating into neurogenic cell lineage after cultivation in different modes in vitro. Cell. Reprogram. 16:1–13, 2014.CrossRefGoogle Scholar
  45. 45.
    Zhao, M., J. Pu, J. V. Forrester, and C. D. McCaig. Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J. 16:857–859, 2002.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • L. Jaatinen
    • 1
  • S. Salemi
    • 2
  • S. Miettinen
    • 3
  • J. Hyttinen
    • 1
  • D. Eberli
    • 2
  1. 1.Department of Electronics and Communications EngineeringTampere University of Technology and BioMediTechTampereFinland
  2. 2.Urologic Tissue Engineering and Stem Cell Therapy, Department of UrologyUniversity Hospital ZürichZurichSwitzerland
  3. 3.Adult Stem Cells, Institute of Biomedical TechnologyUniversity of TampereTampereFinland

Personalised recommendations