Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 1, pp 68–81 | Cite as

An Insight into the Mechanistic Role of the Common Carotid Artery on the Hemodynamics at the Carotid Bifurcation

  • Diego Gallo
  • David A. Steinman
  • Umberto MorbiducciEmail author
Article

Abstract

The rationale for this study lies in the well-known predilection for vascular disease of the carotid bifurcation, attributed to an altered shear stress distribution at the luminal surface and mitigated by helical fluid structures establishing inside the bifurcation. Here we investigate the mechanistic role played by the common carotid artery (CCA) in promoting complex intravascular flow and in influencing the hemodynamics at the distal carotid bifurcation. Fifty-five image-based computational hemodynamic models of eleven right carotid geometries were reconstructed from its brachiocephalic origin to above the bifurcation to assess how five different CCA reconstruction length affects intravascular fluid structures entering the bifurcation. A quantitative description of helical flow is adopted, in parallel to the description of disturbed shear at the bifurcation luminal surface. Our findings support the hypothesis that helical flow in CCA might reduce the likelihood of flow disturbances at the bifurcation. This confirms the physiological role of CCA in transporting and enforcing helical flow structures into the bifurcation, giving further contribution to the helicity-driven suppression of disturbed shear. A quantitative analysis of CCA geometry highlights the beneficial effect of proximal CCA curvature on helical flow and shows the complex interlacement among CCA geometry, helical flow, and disturbed shear at the bifurcation. Since helicity-based descriptors and geometric descriptors relative to the bifurcation have been shown to be significant predictors of disturbed shear, in principle they may be augmented by factors related to CCA geometry and hemodynamics.

Keywords

Vascular disease Wall shear stress Helical flow Vascular geometry Computational hemodynamics Carotid artery 

Notes

Conflict of interest

All authors declare that they have no financial and personal relationships with other people or organizations that could have inappropriately influenced (biased) the submitted work.

Supplementary material

10439_2014_1119_MOESM1_ESM.pdf (56 kb)
Supplementary material 1 (PDF 56 kb)

References

  1. 1.
    Alastruey, J., J. H. Siggers, V. Peiffer, D. J. Doorly, and S. J. Sherwin. Reducing the data: analysis of the role of vascular geometry on blood flow patterns in curved vessels. Phys. Fluids 24:031902, 2012.CrossRefGoogle Scholar
  2. 2.
    Aristokleous, N., I. Seimenis, G. C. Georgiou, Y. Papaharilaou, B. C. Brott, A. Nicolaides, and A. S. Anayiotos. Impact of head rotation on the individualized common carotid flow and carotid bifurcation hemodynamics. IEEE J. Biomed. Health Inform. 18(3):783–789, 2014.PubMedCrossRefGoogle Scholar
  3. 3.
    Balbi, S., S. Roatta, and C. Guiot. Curvature affects Doppler investigation of vessels: implication for clinical practice. Ultrasound Med. Biol. 31:65–77, 2005.CrossRefGoogle Scholar
  4. 4.
    Bijari, P. B., L. Antiga, D. Gallo, B. A. Wasserman, and D. A. Steinman. Improved prediction of disturbed flow via hemodynamically-inspired geometric variables. J. Biomech. 45:1632–1637, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Boussel, L., A. Serusclat, M. R. Skilton, F. Vincent, S. Bernard, P. Moulin, D. Saloner, and P. C. Douek. The reliability of high resolution MRI in the measurement of early stage carotid wall thickening. J. Cardiovasc. Magn. Reson. 9:771–779, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Caro, C. G., C. L. Dumoulin, J. M. Graham, K. H. Parker, and S. P. Souza. Secondary flow in the human common carotid artery imaged by MR angiography. J. Biomech. Eng. 114(1):147–149, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Caro, C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R Soc. Lond. A 452:185–197, 1996.CrossRefGoogle Scholar
  8. 8.
    Dean, W. R. Fluid motion in a curved channel. Proc. Roy. Soc. A 121:402–420, 1927.CrossRefGoogle Scholar
  9. 9.
    Ford, M. D., Y. J. Xie, B. A. Wasserman, and D. A. Steinman. Is flow in the common carotid artery fully developed? Physiol. Meas. 29(11):1335–1349, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Gallo, D., D. A. Steinman, P. B. Bijari, and U. Morbiducci. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J. Biomech. 45:2398–2404, 2012.PubMedCrossRefGoogle Scholar
  11. 11.
    Germano, M. On the effect of torsion on flow. J. Fluid Mech. 125:1–8, 1982.CrossRefGoogle Scholar
  12. 12.
    Germano, M. The Dean equations extended to a helical pipe flow. J. Fluid Mech. 203:289–305, 1989.CrossRefGoogle Scholar
  13. 13.
    Himburg, H. A., D. M. Grzybowski, A. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286(5):H1916–H1922, 2004.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoi, Y., B. A. Wasserman, E. G. Lakatta, and D. A. Steinman. Effect of common carotid artery inlet length on normal carotid bifurcation hemodynamics. J. Biomech. Eng. 132:121008, 2010.PubMedCrossRefGoogle Scholar
  15. 15.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee, S. W., and D. A. Steinman. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129(2):273–278, 2007.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee, S. W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39(8):2341–2347, 2008.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, S. W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131(6):061013, 2009.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, S., and J. H. Masliyah. Axially invariant laminar flow in helical pipes with a finite pitch. J. Fluid Mech. 251:315–353, 1993.CrossRefGoogle Scholar
  20. 20.
    Liu, X., F. Pu, Y. Fan, X. Deng, D. Li, and S. Li. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297:H163–H170, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu, X., Y. Fan, and X. Deng. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 38(3):917–926, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.PubMedCrossRefGoogle Scholar
  23. 23.
    Manbachi, A., Y. Hoi, B. A. Wasserman, E. G. Lakatta, and D. A. Steinman. On the shape of the common carotid artery, with implications for blood velocity profiles. Physiol. Meas. 32(12):1885–1897, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Marzo, A., P. Singh, P. Reymond, N. Stergiopulos, U. Patel, and R. Hose. Influence of inlet boundary conditions on the local hemodynamics of intracranial aneurysms. Comput. Methods Biomech. Biomed. Eng. 12(4):431–444, 2009.CrossRefGoogle Scholar
  25. 25.
    Minev, P. D., and C. R. Ethier. A characteristic/finite element algorithm for the 3-D Navier-Stokes equations using unstructured grids. Comput. Methods Appl. Mech. Eng. 178:39–50, 1998.CrossRefGoogle Scholar
  26. 26.
    Moffatt, H. K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35(1):17–29, 1969.CrossRefGoogle Scholar
  27. 27.
    Moffatt, H. K., and A. Tsinober. Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24:281–312, 1992.CrossRefGoogle Scholar
  28. 28.
    Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis in aortocoronary bypass. A numeric study. J. Biomech. 40:519–534, 2007.PubMedCrossRefGoogle Scholar
  29. 29.
    Morbiducci, U., D. Gallo, R. Ponzini, D. Massai, L. Antiga, A. Redaelli, and F. M. Montevecchi. Quantitative analysis of bulk flow in image-based haemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case. Ann. Biomed. Eng. 38(12):3688–3705, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Morbiducci, U., D. Gallo, D. Massai, R. Ponzini, M. A. Deriu, L. Antiga, A. Redaelli, and F. M. Montevecchi. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J. Biomech. 44:2427–2438, 2011.PubMedCrossRefGoogle Scholar
  31. 31.
    Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10:339–355, 2011.PubMedCrossRefGoogle Scholar
  32. 32.
    Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in human aorta. J. Biomech. 46(1):102–109, 2013.PubMedCrossRefGoogle Scholar
  33. 33.
    Moyle, K. R., L. Antiga, and D. A. Steinman. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J. Biomech. Eng. 128(3):371–379, 2006.PubMedCrossRefGoogle Scholar
  34. 34.
    Myers, J. G., J. A. Moore, M. Ohja, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in human right coronary artery. Ann. Biomed. Eng. 29(2):109–120, 2001.PubMedCrossRefGoogle Scholar
  35. 35.
    Mynard, J. P., B. A. Wasserman, and D. A. Steinman. Errors in the estimation of wall shear stress by maximum Doppler velocity. Atherosclerosis 227(2):259–266, 2013.PubMedCrossRefGoogle Scholar
  36. 36.
    Pantos, J., E. Efstathopoulos, and D. G. Katritsis. Vascular wall shear stress in clinical practice. Curr. Vasc. Pharmacol. 5:113–119, 2007.PubMedCrossRefGoogle Scholar
  37. 37.
    Papaharilaou, Y., N. Aristokleous, I. Seimenis, M. I. Khozeymeh, G. C. Georgiou, B. C. Briott, E. Eracleous, and A. S. Anayiotos. Effect of head posture on the healthy human carotid bifurcation hemodynamics. Med. Biol. Eng. Comput. 51(1–2):207–218, 2013.PubMedCrossRefGoogle Scholar
  38. 38.
    Perktold, K., E. Thurner, and T. Kenner. Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Med. Biol. Eng. Comput. 32(1):19–26, 1994.PubMedCrossRefGoogle Scholar
  39. 39.
    Ponzini, R., C. Vergara, G. Rizzo, A. Veneziani, A. Roghi, A. Vanzulli, O. Parodi, and A. Redaelli. Womersley number-based estimates of blood flow rate in Doppler analysis: in vivo validation by means of phase-contrast MRI. IEEE Trans. Biomed. Eng. 57(7):1807–1815, 2010.PubMedCrossRefGoogle Scholar
  40. 40.
    Sangalli, L. M., P. Secchi, S. Vantini, and A. Veneziani. Efficient estimation of three-dimensional curves and their derivatives by free-knot regression splines, applied to the analysis of inner carotid artery centrelines. Appl. Statist. 58(3):285–306, 2009.Google Scholar
  41. 41.
    Sluimer, J. C., J. M. Gasc, J. L. van Wanroij, N. Kisters, M. Groeneweg, M. D. Sollewijn Gelpke, J. P. Cleutjens, L. H. van den Akker, P. Corvol, B. G. Wouters, M. J. Daemen, and A. P. Bijnens. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J. Am. Coll. Cardiol. 51:1258–1265, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Stonebridge, P. A., P. R. Hoskins, P. L. Allan, and J. F. Belch. Spiral laminar flow in vivo. Clin. Sci. (Lond.) 91:17–21, 1996.Google Scholar
  43. 43.
    Thomas, J. B., L. Antiga, S. L. Che, J. S. Milner, D. A. Hangan-Steinman, J. D. Spence, B. K. Rutt, and D. A. Steinman. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke 36:2450–2456, 2005.PubMedCrossRefGoogle Scholar
  44. 44.
    Tortoli, P., V. Michelassi, G. Bambi, F. Guidi, and D. Righi. Interaction between secondary velocities, flow pulsation and vessel morphology in the common carotid artery. Ultrasound Med. Biol. 29:407–415, 2003.PubMedCrossRefGoogle Scholar
  45. 45.
    Wake, A. K., J. N. Oshinski, A. R. Tannenbaum, and D. P. Giddens. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131(2):021013, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Zhou, S., and X. Shen. Spatially adaptive regression splines and accurate knot selection schemes. JASA 96(453):247–259, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Diego Gallo
    • 1
  • David A. Steinman
    • 2
    • 3
  • Umberto Morbiducci
    • 1
    Email author
  1. 1.Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
  2. 2.Biomedical Simulation Laboratory, Department of Mechanical & Industrial EngineeringUniversity of TorontoTorontoCanada
  3. 3.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations