Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 2, pp 376–387 | Cite as

A Systems View of Risk Factors for Knee Osteoarthritis Reveals Insights into the Pathogenesis of the Disease

  • Thomas P. Andriacchi
  • Julien Favre
  • J. C. Erhart-Hledik
  • Constance R. Chu
Article

Abstract

Early detection of osteoarthritis (OA) remains a critical yet unsolved multifaceted problem. To address the multifaceted nature of OA a systems model was developed to consolidate a number of observations on the biological, mechanical and structural components of OA and identify features common to the primary risk factors for OA (aging, obesity and joint trauma) that are present prior to the development of clinical OA. This analysis supports a unified view of the pathogenesis of OA such that the risk for developing OA emerges when one of the components of the disease (e.g., mechanical) becomes abnormal, and it is the interaction with the other components (e.g., biological and/or structural) that influences the ultimate convergence to cartilage breakdown and progression to clinical OA. The model, applied in a stimulus-response format, demonstrated that a mechanical stimulus at baseline can enhance the sensitivity of a biomarker to predict cartilage thinning in a 5 year follow-up in patients with knee OA. The systems approach provides new insight into the pathogenesis of the disease and offers the basis for developing multidisciplinary studies to address early detection and treatment at a stage in the disease where disease modification has the greatest potential for a successful outcome.

Keywords

Osteoarthritis Knee Biomechanics Cartilage OA biomarkers Cartilage MRI OA risk factors 

References

  1. 1.
    Agency for Healthcare Research and Quality. National and regional statistics in the national inpatient sample (2004–2006). Agency for Healthcare Research and Quality, 2006.Google Scholar
  2. 2.
    Andriacchi, T. P. Osteoarthritis: probing knee OA as a system responding to a stimulus. Nat. Rev. Rheumatol. 8(7):371–372, 2012.CrossRefPubMedGoogle Scholar
  3. 3.
    Andriacchi, T. P., S. Koo, and S. F. Scanlan. Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J. Bone Joint Surg. Am. 91(Suppl 1):95–101, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Andriacchi, T. P., A. Muendermann, R. L. Smith, E. J. Alexander, C. O. Dyrby, and S. Koo. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32(3):447–457, 2004.CrossRefPubMedGoogle Scholar
  5. 5.
    Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21(1):16–21, 2013.CrossRefPubMedGoogle Scholar
  6. 6.
    Bevill, S. L., K. A. Boyer, and T. P. Andriacchi. The regional sensitivity of chondrocyte gene expression to coactive mechanical load and exogenous TNF-α stimuli. J. Biomech. Eng. 136(9):091005, 2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Bevill, S. L., P. L. Briant, M. E. Levenston, and T. P. Andriacchi. Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression. Osteoarthritis Cartilage 17(8):980–987, 2009.CrossRefPubMedGoogle Scholar
  8. 8.
    Blazek, K., J. Favre, J. Asay, J. Erhart-Hledik, and T. P. Andriacchi. Age and obesity alter the relationship between femoral articular cartilage thickness and ambulatory loads in individuals without osteoarthritis. J. Orthop. Res. 32(3):394–402, 2014.CrossRefPubMedGoogle Scholar
  9. 9.
    Casper, J., and K. Berg. Effects of exercise on osteoarthritis: a review. J. Strength Cond. Res. 12(2):120–125, 1998.Google Scholar
  10. 10.
    Cheng, Y., C. A. Macera, D. R. Davis, B. E. Ainsworth, P. J. Troped, and S. N. Blair. Physical activity and self-reported, physician-diagnosed osteoarthritis: is physical activity a risk factor? J. Clin. Epidemiol. 53(3):315–322, 2000.CrossRefPubMedGoogle Scholar
  11. 11.
    Chevalier, X., P. Goupille, A. D. Beaulieu, F. X. Burch, W. G. Bensen, T. Conrozier, D. Loeuille, A. J. Kivitz, D. Silver, and B. E. Appleton. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61(3):344–352, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Chu, C. R., A. A. Williams, C. H. Coyle, and M. E. Bowers. Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res. Ther. 14(3):212, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Chu, C. R., A. Williams, D. Tolliver, C. K. Kwoh, S. Bruno, 3rd, and J. J. Irrgang. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheum. 62(5):1412–1420, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Chu, C. R., A. A.Williams, R. V. West, Y. Qian, F. H. Fu, B. H. Do, and S. Bruno. Quantitative magnetic resonance imaging UTE-T2* mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am. J. Sports Med. 2014 [Epub ahead of print].Google Scholar
  15. 15.
    Cooper, C., S. Snow, T. E. McAlindon, S. Kellingray, B. Stuart, D. Coggon, and P. A. Dieppe. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. 43(5):995–1000, 2000.CrossRefPubMedGoogle Scholar
  16. 16.
    Dayal, N., A. Chang, D. Dunlop, K. Hayes, R. Chang, S. Cahue, J. Song, L. Torres, and L. Sharma. The natural history of anteroposterior laxity and its role in knee osteoarthritis progression. Arthritis Rheum. 52(8):2343–2349, 2005.CrossRefPubMedGoogle Scholar
  17. 17.
    DeVita, P., and T. Hortobagyi. Obesity is not associated with increased knee joint torque and power during level walking. J. Biomech. 36(9):1355–1362, 2003.CrossRefPubMedGoogle Scholar
  18. 18.
    Dye, S. F. The knee as a biologic transmission with an envelope of function: a theory. Clin. Orthop. Relat. Res. 325:10–18, 1996.CrossRefPubMedGoogle Scholar
  19. 19.
    Erhart-Hledik, J. C., J. Favre, J. L. Asay, R. L. Smith, N. J. Giori, A. Muendermann, and T. P. Andriacchi. A relationship between mechanically-induced changes in serum cartilage oligomeric matrix protein (COMP) changes in cartilage thickness after 5 years. Osteoarthritis Cartilage 20(11):1309–1315, 2012.CrossRefPubMedGoogle Scholar
  20. 20.
    Favre, J., J. C. Erhart-Hledik, and T. P. Andriacchi. Age-related differences in sagittal-plane knee function at heel-strike of walking are increased in osteoarthritic patients. Osteoarthritis Cartilage 22(3):464–471, 2014.CrossRefPubMedGoogle Scholar
  21. 21.
    Favre, J., J. C. Erhart-Hledik, E. Chehab, and T. P. Andriacchi. Ambulatory kinematics correlates with future disease progression in medial osteoarthritis. XXIV Congress of the International Society of Biomechanics, Brazil, 2013.Google Scholar
  22. 22.
    Favre, J., B. Fasel, and T. P. Andriacchi. Pattern in femoral cartilage thickness map allows subtle scoring of medial compartment knee osteoarthritis severity. Osteoarthritis Cartilage 21:S231–S232, 2013.CrossRefGoogle Scholar
  23. 23.
    Favre, J., S. F. Scanlan, J. C. Erhart-Hledik, K. Blazek, and T. P. Andriacchi. Patterns of femoral cartilage thickness are different in asymptomatic and osteoarthritic knees and can be used to detect disease-related differences between samples. J. Biomech. Eng. 135(10):101002–101010, 2013.CrossRefPubMedGoogle Scholar
  24. 24.
    Felson, D. T. Osteoarthritis as a disease of mechanics. Osteoarthritis Cartilage 21(1):10–15, 2013.CrossRefPubMedGoogle Scholar
  25. 25.
    Felson, D. T., A. Naimark, J. Anderson, L. Kazis, W. Castelli, and R. F. Meenan. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 30(8):914–918, 1987.CrossRefPubMedGoogle Scholar
  26. 26.
    Georgoulis, A. D., A. Papadonikolakis, C. D. Papageorgiou, A. Mitsou, and N. Stergiou. Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am. J. Sports Med. 31(1):75–79, 2003.PubMedGoogle Scholar
  27. 27.
    Gold, G. E., B. A. Hargreaves, S. B. Reeder, W. F. Block, R. Kijowski, S. S. Vasanawala, P. R. Kornaat, R. Bammer, R. Newbould, N. K. Bangerter, and C. F. Beaulieu. Balanced SSFP imaging of the musculoskeletal system. J. Magn. Reson. Imaging 25(2):270–278, 2007.CrossRefPubMedGoogle Scholar
  28. 28.
    Gold, G. E., D. R. Thedens, J. M. Pauly, K. P. Fechner, G. Bergman, C. F. Beaulieu, and A. Macovski. MR imaging of articular cartilage of the knee: new methods using ultrashort TEs. AJR Am. J. Roentgenol. 170(5):1223–1226, 1998.CrossRefPubMedGoogle Scholar
  29. 29.
    Hunter, D. J., W. Zhang, P. G. Conaghan, K. Hirko, L. Menashe, L. Li, W. M. Reichmann, and E. Losina. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage 19(5):557–588, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Koo, S., and T. P. Andriacchi. A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee. J. Biomech. 40(13):2961–2966, 2007.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Koo, S., G. E. Gold, and T. P. Andriacchi. Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy. Osteoarthritis Cartilage 13(9):782–789, 2005.CrossRefPubMedGoogle Scholar
  32. 32.
    Koo, S., J. H. Rylander, and T. P. Andriacchi. Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee. J. Biomech. 44(7):1405–1409, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Lepus, C. M., J. J. Song, Q. Wang, C. A. Wagner, T. M. Lindstrom, C. R. Chu, J. Sokolove, L. L. Leung, and W. H. Robinson. Brief report: carboxypeptidase B serves as a protective mediator in osteoarthritis. Arthritis Rheumatol. 66(1):101–106, 2014.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Li, G., L. E. Defrate, H. E. Rubash, and T. J. Gill. In vivo kinematics of the ACL during weight-bearing knee flexion. J. Orthop. Res. 23(2):340–344, 2005.CrossRefPubMedGoogle Scholar
  35. 35.
    Li, Y., E. H. Frank, Y. Wang, S. Chubinskaya, H. H. Huang, and A. J. Grodzinsky. Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates degradation above a strain threshold. Osteoarthritis Cartilage 21(12):1933–1941, 2013.CrossRefPubMedGoogle Scholar
  36. 36.
    Lohmander, L. S., A. Ostenberg, M. Englund, and H. Roos. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 50(10):3145–3152, 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    Meulenbelt, I., V. B. Kraus, L. J. Sandell, and J. Loughlin. Summary of the OA biomarkers workshop 2010—genetics and genomics: new targets in OA. Osteoarthritis Cartilage 19(9):1091–1094, 2011.CrossRefPubMedGoogle Scholar
  38. 38.
    Muendermann, A., C. Dyrby, T. Andriacchi, and K. B. King. Serum concentration of cartilage oligomeric matrix protein (COMP) is sensitive to physiological cyclic loading in healthy adults. Osteoarthritis Cartilage 13(1):34–38, 2005.CrossRefGoogle Scholar
  39. 39.
    Muendermann, A., K. B. King, R. L. Smith, and T. P. Andriacchi. Change in serum COMP concentration due to ambulatory load is not related to knee OA status. J. Orthop. Res. 27(11):1408–1413, 2009.CrossRefGoogle Scholar
  40. 40.
    Netravali, N. A., N. J. Giori, and T. P. Andriacchi. Partial medial meniscectomy and rotational differences at the knee during walking. J. Biomech. 43(15):2948–2953, 2010.CrossRefPubMedGoogle Scholar
  41. 41.
    Patra, D., and L. J. Sandell. Recent advances in biomarkers in osteoarthritis. Curr. Opin. Rheumatol. 23(5):465–470, 2011.CrossRefPubMedGoogle Scholar
  42. 42.
    Quinn, T. M., H. J. Hauselmann, N. Shintani, and E. B. Hunziker. Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical roles. Osteoarthr. Cartilage. 21(12):1904–1912, 2013.Google Scholar
  43. 43.
    Rao, C., C. K. Fitzpatrick, P. J. Rullkoetter, L. P. Maletsky, R. H. Kim, and P. J. Laz. A statistical finite element model of the knee accounting for shape and alignment variability. Med. Eng. Phys. 35(10):1450–1456, 2013.CrossRefPubMedGoogle Scholar
  44. 44.
    Ryder, J. J., K. Garrison, F. Song, L. Hooper, J. Skinner, Y. Loke, J. Loughlin, J. P. Higgins, and A. J. MacGregor. Genetic associations in peripheral joint osteoarthritis and spinal degenerative disease: a systematic review. Ann. Rheum. Dis. 67:584–591, 2008.CrossRefPubMedGoogle Scholar
  45. 45.
    Saxne, T., and D. Heinegård. Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br. J. Rheumatol. 31(9):583–591, 1992.CrossRefPubMedGoogle Scholar
  46. 46.
    Scanlan, S. F., A. M. Chaudhari, C. O. Dyrby, and T. P. Andriacchi. Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J. Biomech. 43(9):1817–1822, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Scanlan, S. F., J. Favre, and T. P. Andriacchi. The relationship between peak knee extension at heel-strike of walking and the location of thickest femoral cartilage in ACL reconstructed and healthy contralateral knees. J. Biomech. 46(5):849–854, 2013.CrossRefPubMedGoogle Scholar
  48. 48.
    Sellam, J., and F. Berenbaum. Is osteoarthritis a metabolic disease? Joint Bone Spine. 80(6):568–573, 2013.CrossRefPubMedGoogle Scholar
  49. 49.
    Sharma, L., J. Song, D. Dunlop, D. Felson, C. E. Lewis, N. Segal, J. Torner, T. D. Cooke, J. Hietpas, J. Lynch, and M. Nevitt. Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann. Rheum. Dis. 69(11):1940–1945, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Shelbourne, K. D., and T. Gray. Minimum 10-year results after anterior cruciate ligament reconstruction: how the loss of normal knee motion compounds other factors related to the development of osteoarthritis after surgery. Am. J. Sports Med. 37(3):471–480, 2009.CrossRefPubMedGoogle Scholar
  51. 51.
    Sohn, D. H., J. Sokolove, O. Sharpe, J. C. Erhart, P. E. Chandra, L. J. Lahey, T. M. Lindstrom, I. Hwang, K. A. Boyer, T. P. Andriacchi, and W. H. Robinson. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res. Ther. 14(1):R7, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Tashman, S., P. Kolowich, D. Collon, K. Anderson, and W. Anderst. Dynamic function of the ACL-reconstructed knee during running. Clin. Orthop. Relat. Res. 454:66–73, 2007.CrossRefPubMedGoogle Scholar
  53. 53.
    Verbruggen, G., R. Wittoek, B. Vander Cruyssen, and D. Elewaut. Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints: a double blind, randomised trial on structure modification. Ann. Rheum. Dis. 71(6):891–898, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Wang, Q., A. L. Rozelle, C. M. Lepus, C. R. Scanzello, J. J. Song, D. M. Larsen, J. F. Crish, G. Bebek, et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17(12):1674–1679, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Williams, A., Y. Qian, D. Bear, and C. R. Chu. Assessing degeneration of human articular cartilage with ultra-short echo time (UTE) T2* mapping. Osteoarthritis Cartilage 18(4):539–546, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Wirth, W., and F. Eckstein. A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging. IEEE Trans. Med. Imaging 27(6):737–744, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Thomas P. Andriacchi
    • 1
    • 2
    • 3
  • Julien Favre
    • 1
    • 4
  • J. C. Erhart-Hledik
    • 2
  • Constance R. Chu
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Orthopaedic SurgeryStanford UniversityStanfordUSA
  3. 3.Joint Preservation CenterPalo Alto VAPalo AltoUSA
  4. 4.Muskuloskeletal MedicineCentre Hospitalier Universitaire Vaudois and University of LausanneLausanneSwitzerland

Personalised recommendations