Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2440–2450 | Cite as

The Biaxial Biomechanical Behavior of Abdominal Aortic Aneurysm Tissue

  • Siobhan A. O’Leary
  • Donagh A. Healey
  • Eamon G. Kavanagh
  • Michael T. Walsh
  • Tim M. McGloughlin
  • Barry J. DoyleEmail author


Rupture of the abdominal aortic aneurysm (AAA) occurs when the local wall stress exceeds the local wall strength. Knowledge of AAA wall mechanics plays a fundamental role in the development and advancement of AAA rupture risk assessment tools. Therefore, the aim of this study is to evaluate the biaxial mechanical properties of AAA tissue. Multiple biaxial test protocols were performed on AAA samples harvested from 28 patients undergoing open surgical repair. Both the Tangential Modulus (TM) and stretch ratio (λ) were recorded and compared in both the circumferential (ϴ) and longitudinal (L) directions at physiologically relevant stress levels, the influence of patient specific factors such as sex, age AAA diameter and status were examined. The biomechanical response was also fit to a hyperplastic material model. The AAA tissue was found to be anisotropic with a greater tendency to stiffen in the circumferential direction compared to the longitudinal direction. An anisotropic hyperelastic constitutive model represented the data well and the properties were not influenced by the investigated patient specific factors however, a future study utilizing a larger cohort of patients is warranted to confirm these findings. This work provides further insights on the biomechanical behavior of AAA and may be useful in the development of more reliable rupture risk assessment tools.


Mechanical properties AAA Anisotropy 



The authors would like to thank the Irish Research Council ‘EMBARK Initiative’ (Grant No. IDRS/2010/2941) for funding this study. BJD would like to acknowledge The University of Western Australia Research Fellowship and NHMRC Project Grant APP1063986. This work was supported by the Irish Government’s Programme for Research in Third Level Institutions Cycle 5, with the assistance of the European Regional Development Fund. The authors would also like to thank the Department of Vascular Surgery, University Hospital Limerick, Ireland, in particular Dr. Peter Coyle, for their help in harvesting and collecting the AAA tissue and also Caleb Horst for providing technical support for the Cellscale Biotester.

Conflict of interest

There are no conflicts of interest.

Supplementary material

10439_2014_1106_MOESM1_ESM.docx (727 kb)
Supplementary material 1 (DOCX 728 kb)


  1. 1.
    Brown, P. M., D. T. Zelt, and B. Sobolev. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J. Vasc. Surg. 37:280–284, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Buijs, R., T. Willems, R. Tio, H. Boersma, I. Tielliu, R. Slart, et al. Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 6:542–548, 2013.Google Scholar
  3. 3.
    Chaikof, E. L., D. C. Brewster, R. L. Dalman, M. S. Makaroun, K. A. Illig, G. A. Sicard, et al. The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines. J. Vasc. Surg. 50:S2–S49, 2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Choi, H. S., and R. P. Vito. Two-dimensional stress–strain relationship for canine pericardium. J. Biomech. Eng. 112:153–159, 1990.PubMedCrossRefGoogle Scholar
  5. 5.
    Choke, E., G. Cockerill, W. R. W. Wilson, S. Sayed, J. Dawson, I. Loftus, et al. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 30:227–244, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Chuong, C. J., and Y. C. Fung. Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17:35–40, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Darling, R., C. Messina, and D. Brewster. Autospsy of unoperated aortic aneurysms. The case of early resection. Circulation 56:164, 1977.Google Scholar
  8. 8.
    Di Martino, E. S., A. Bohra, J. P. Vande Geest, N. Gupta, M. S. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured vs. electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.PubMedCrossRefGoogle Scholar
  9. 9.
    Doyle, B., A. Callanan, P. Grace, and E. Kavanagh. On the influence of patient-specific material properties in computational simulations: a case study of a large ruptured abdominal aortic aneurysm. Int. J. Num. Methods Biomed. Eng. 29:150–164, 2013.CrossRefGoogle Scholar
  10. 10.
    Doyle, B., T. McGloughlin, K. Miller, J. Powell, and P. Norman. Regions of high wall stress can predict the future location of rupture of abdominal aortic aneurysm. Cardiovasc. Interv. Radiol. 29:1–4, 2014.CrossRefGoogle Scholar
  11. 11.
    Jacob, M. P. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed. Pharmacother. 57:195–202, 2003.PubMedCrossRefGoogle Scholar
  12. 12.
    Kamenskiy A., Y. Dzenis, S. J. Kazmi, M. Pemberton, I. Pipinos, N. Phillips, et al. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries. Biomech Model Mechanobiol. 2014. doi: 10.1007/s10237-014-0576-6.
  13. 13.
    Kent, K. C., R. M. Zwolak, N. N. Egorova, T. S. Riles, A. Manganaro, A. J. Moskowitz, et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J. Vasc. Surg. 52:539–548, 2010.PubMedCrossRefGoogle Scholar
  14. 14.
    Lo, R., R. Bensley, A. Hamdan, M. Wyers, J. Adams, and M. Schermerhorn. Gender differences in abdominal aortic aneurysm presentation, repair, and mortality in the Vascular Study Group of New England. J. Vasc. Surg. 57:1261–1268, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Maier, A., M. Gee, C. Reeps, J. Pongratz, H. H. Eckstein, and W. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.PubMedCrossRefGoogle Scholar
  16. 16.
    Mofidi, R., V. Goldie, J. Kelman, A. Dawson, J. Murie, and R. Chalmers. Influence of sex on expansion rate of abdominal aortic aneurysms. Br. J. Surg. 94:310–314, 2007.PubMedCrossRefGoogle Scholar
  17. 17.
    Newman, D. L., and R. C. Lallemand. The effect of age on the distensibility of the abdominal aorta of man. Surg. Gynecol. Obstet. 147:211–214, 1978.PubMedGoogle Scholar
  18. 18.
    O’Leary, S., B. Doyle, and T. McGloughlin. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J. Biomech. 46:1955–1960, 2013.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Leary S., B. Doyle, and T. McGloughlin. The impact of long term freezing on the mechanical properties of porcine aortic tissue. J. Mech. Behav. Biomed. 37:165–173, 2014.Google Scholar
  20. 20.
    O’Leary, S., E. Kavanagh, P. Grace, T. McGloughlin, and B. Doyle. The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: classification of morphology and the determination of layer and region specific properties. J. Biomech. 47:1430, 2014.PubMedCrossRefGoogle Scholar
  21. 21.
    Polzer, S., T. Christian Gasser, J. Bursa, R. Staffa, R. Vlachovsky, V. Man, et al. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med. Eng. Phys. 35:1282–1289, 2013.PubMedCrossRefGoogle Scholar
  22. 22.
    Raghavan, M. L., M. M. Hanaoka, J. A. Kratzberg, M. D. L. Higuchi, and E. S. da Silva. Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J. Biomech. 44:2501–2507, 2011.PubMedCrossRefGoogle Scholar
  23. 23.
    Raghavan, M., J. Kratzberg, E. Castro de Tolosa, M. Hanaoka, P. Walker, and E. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.PubMedCrossRefGoogle Scholar
  24. 24.
    Raghavan, M., M. Webster, and D. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24:573–582, 1996.PubMedCrossRefGoogle Scholar
  25. 25.
    Reeps, C., A. Maier, J. Pelisek, F. Härtl, V. Grabher-Meier, W. A. Wall, et al. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech. Model. Mechanobiol. 12:717–733, 2013.PubMedCrossRefGoogle Scholar
  26. 26.
    Sacks, M., and C. Chuong. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Eng. 26:892–902, 1998.PubMedCrossRefGoogle Scholar
  27. 27.
    Sacks, M. S., and W. Sun. Multiaxial mechanical behavior of biological materials. Ann. Rev. Biomed. Eng. 5:251–284, 2003.CrossRefGoogle Scholar
  28. 28.
    Schlosser, F. J., I. Vaartjes, G. J. van der Heijden, F. L. Moll, H. J. Verhagen, B. E. Muhs, et al. Mortality after elective abdominal aortic aneurysm repair. Ann. Surg. 251:158–164, 2010.PubMedCrossRefGoogle Scholar
  29. 29.
    Stergiopulos, N., S. Vulliémoz, A. Rachev, J. J. Meister, and S. E. Greenwald. Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J. Vasc. Res. 38:237–246, 2001.PubMedCrossRefGoogle Scholar
  30. 30.
    Swedenborg, J., and P. E. R. Eriksson. The intraluminal thrombus as a source of proteolytic activity. Ann. NY Acad. Sci. 1085:133–138, 2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Tavares Monteiro J., E. Simão da Silva, M. Raghavan, P. Puech-Leão, M. Higuchi, and J. Otoch. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. J. Vasc. Surg. 59:1393–1401, 2013.Google Scholar
  32. 32.
    Thompson, M. M. Controlling the expansion of abdominal aortic aneurysms. Br. J. Surg. 90:897–898, 2003.PubMedCrossRefGoogle Scholar
  33. 33.
    Thompson, S. G., L. C. Brown, M. J. Sweeting, M. J. Bown, L. G. Kim, M. J. Glover, et al. Systematic review and meta-analysis of the growth and rupture rates of small abdominal aortic aneurysms: implications for surveillance intervals and their cost-effectiveness. Health Technol. Assess. 17:1–118, 2013.PubMedCrossRefGoogle Scholar
  34. 34.
    Thubrikar, M., M. Labrosse, F. Robicsek, J. Al-Soudi, and B. Fowler. Mechanical properties of abdominal aortic aneurysm wall. J. Med. Eng. Technol. 25:133–142, 2001.PubMedCrossRefGoogle Scholar
  35. 35.
    Tong, J., T. Cohnert, P. Regitnig, and G. Holzapfel. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Eur. J. Vasc. Endovasc. Surg. 42:207–219, 2011.PubMedCrossRefGoogle Scholar
  36. 36.
    Tong, J., A. J. Schriefl, T. Cohnert, and G. A. Holzapfel. Gender differences in biomechanical properties, thrombus age, mass fraction and clinical factors of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 45:364–372, 2013.PubMedCrossRefGoogle Scholar
  37. 37.
    Vande, Geest J., E. Dillavou, E. Di Martino, M. Oberdier, A. Bohra, M. Makaroun, et al. Gender-related differences in the tensile strength of abdominal aortic aneurysm. Ann. NY Acad. Sci. 1085:400–402, 2006.CrossRefGoogle Scholar
  38. 38.
    Vande, Geest J., M. S. Sacks, and D. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006.CrossRefGoogle Scholar
  39. 39.
    Vande, Geest J., D. Schmidt, M. Sacks, and D. Vorp. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36:921–932, 2008.CrossRefGoogle Scholar
  40. 40.
    Vardulaki, K. A., T. C. Prevost, N. M. Walker, N. E. Day, A. B. M. Wilmink, C. R. G. Quick, et al. Growth rates and risk of rupture of abdominal aortic aneurysms. Br. J. Surg. 85:1674–1680, 1998.PubMedCrossRefGoogle Scholar
  41. 41.
    Vorp, P. C., D. H. J. Wang Lee, M. S. Makaroun, E. M. Nemoto, S. Ogawa, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2001.PubMedCrossRefGoogle Scholar
  42. 42.
    Wanhainen, A., R. Themudo, H. Ahlstrom, L. Lind, and L. Johansson. Thoracic and abdominal aortic dimension in 70-year-old men and women—a population-based whole-body magnetic resonance imaging (MRI) study. J. Vasc. Surg. 47:504–512, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Siobhan A. O’Leary
    • 1
  • Donagh A. Healey
    • 2
  • Eamon G. Kavanagh
    • 2
  • Michael T. Walsh
    • 1
  • Tim M. McGloughlin
    • 1
    • 3
  • Barry J. Doyle
    • 4
    • 5
    Email author
  1. 1.Mechanical, Aeronautical and Biomedical Engineering Department, MSG-013-020, Centre for Applied Biomedical Engineering Research, Materials and Surfaces Science InstituteUniversity of LimerickLimerickIreland
  2. 2.Department of Vascular SurgeryUniversity HospitalLimerickIreland
  3. 3.Department of Biomedical EngineeringKhalifa University of Science, Technology & Research (KUSTAR)Abu DhabiUAE
  4. 4.Vascular Engineering, Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical EngineeringThe University of Western AustraliaPerthAustralia
  5. 5.Centre for Cardiovascular ScienceThe University of EdinburghEdinburghUK

Personalised recommendations