Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 3, pp 641–656 | Cite as

A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering

  • Matthew J. Webber
  • Omar F. Khan
  • Stefanie A. Sydlik
  • Benjamin C. Tang
  • Robert LangerEmail author
Article

Abstract

Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.

Keywords

Stem cells Scaffolds Engineering constraints FDA approval Entrepreneurial biotechnology Material properties 

Notes

Acknowledgments

MJW acknowledges support from the National Institutes of Health (NIDDK) for support through a Ruth Kirschstein National Research Service Award (F32DK101335). BCT acknowledges support from the Juvenile Diabetes Research Foundation for a Postdoctoral Fellowship (3-2011-310).

References

  1. 1.
    Abarrategi, A., M. E. Fernandez-Valle, T. Desmet, D. Castejon, A. Civantos, C. Moreno-Vicente, V. Ramos, J. V. Sanz-Casado, F. J. Martinez-Vazquez, P. Dubruel, P. Miranda, and J. L. Lopez-Lacomba. Label-free magnetic resonance imaging to locate live cells in three-dimensional porous scaffolds. J. R. Soc. Interface R. Soc. 9:2321–2331, 2012.Google Scholar
  2. 2.
    Anthanasiou, K. A., E. M. Darling, and J. C. Hu. Articular Cartilage Tissue Engineering. San Rafael: Morgan and Claypool Publishers, 2010.Google Scholar
  3. 3.
    Arenas-Herrera, J. E., I. K. Ko, A. Atala, and J. J. Yoo. Decellularization for whole organ bioengineering. Biomed. Mater. 8:014106, 2013.PubMedGoogle Scholar
  4. 4.
    Atala, A., S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246, 2006.PubMedGoogle Scholar
  5. 5.
    Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593, 2007.PubMedGoogle Scholar
  6. 6.
    Badylak, S. F., and T. W. Gilbert. Immune response to biologic scaffold materials. Semin. Immunol. 20:109–116, 2008.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Bago, J. R., E. Aguilar, M. Alieva, C. Soler-Botija, O. F. Vila, S. Claros, J. A. Andrades, J. Becerra, N. Rubio, and J. Blanco. In vivo bioluminescence imaging of cell differentiation in biomaterials: a platform for scaffold development. Tissue Eng. Part A 19:593–603, 2013.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Bell, E., H. P. Ehrlich, D. J. Buttle, and T. Nakatsuji. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211:1052–1054, 1981.PubMedGoogle Scholar
  9. 9.
    Bello, Y. M., A. F. Falabella, and W. H. Eaglstein. Tissue-engineered skin. Current status in wound healing. Am. J. Clin. Dermatol. 2:305–313, 2001.PubMedGoogle Scholar
  10. 10.
    Benton, J. A., B. D. Fairbanks, and K. S. Anseth. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable peg hydrogels. Biomaterials 30:6593–6603, 2009.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Bosman, F. T., and I. Stamenkovic. Functional structure and composition of the extracellular matrix. J. Pathol. 200:423–428, 2003.PubMedGoogle Scholar
  12. 12.
    Burg, K. J., S. Porter, and J. F. Kellam. Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359, 2000.PubMedGoogle Scholar
  13. 13.
    Burke, J. F., I. V. Yannas, W. C. Quinby, Jr, C. C. Bondoc, and W. K. Jung. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194:413–428, 1981.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Caplan, A. I., and J. E. Dennis. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98:1076–1084, 2006.PubMedGoogle Scholar
  15. 15.
    Chan, B. P., and K. W. Leong. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 17(Suppl 4):467–479, 2008.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Chertok, B., M. J. Webber, M. D. Succi, and R. Langer. Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies. Mol. Pharm. 10:3531–3543, 2013.PubMedGoogle Scholar
  17. 17.
    Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.PubMedGoogle Scholar
  18. 18.
    Daly, K. A., S. Liu, V. Agrawal, B. N. Brown, A. Huber, S. A. Johnson, J. Reing, B. Sicari, M. Wolf, X. Zhang, and S. F. Badylak. The host response to endotoxin-contaminated dermal matrix. Tissue Eng. Part A 18:1293–1303, 2012.PubMedGoogle Scholar
  19. 19.
    Dang, T. T., A. V. Thai, J. Cohen, J. E. Slosberg, K. Siniakowicz, J. C. Doloff, M. Ma, J. Hollister-Lock, K. M. Tang, Z. Gu, H. Cheng, G. C. Weir, R. Langer, and D. G. Anderson. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34:5792–5801, 2013.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Davis, G. E., K. J. Bayless, M. J. Davis, and G. A. Meininger. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156:1489–1498, 2000.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Derby, B. Printing and prototyping of tissues and scaffolds. Science 338:921–926, 2012.PubMedGoogle Scholar
  22. 22.
    di Summa, P. G., P. J. Kingham, C. C. Campisi, W. Raffoul, and D. F. Kalbermatten. Collagen (neuragen((r))) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci. Lett. 572:26–31, 2014.PubMedGoogle Scholar
  23. 23.
    Diederichs, S., K. Baral, M. Tanner, and W. Richter. Interplay between local versus soluble transforming growth factor-beta and fibrin scaffolds: role of cells and impact on human mesenchymal stem cell chondrogenesis. Tissue Eng. Part A 18:1140–1150, 2012.PubMedGoogle Scholar
  24. 24.
    Elliott, R. B., L. Escobar, R. Calafiore, G. Basta, O. Garkavenko, A. Vasconcellos, and C. Bambra. Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys. Transplant. Proc. 37:466–469, 2005.PubMedGoogle Scholar
  25. 25.
    Falanga, V., and M. Sabolinski. A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 7:201–207, 1999.PubMedGoogle Scholar
  26. 26.
    Fishman, J. M., M. W. Lowdell, L. Urbani, T. Ansari, A. J. Burns, M. Turmaine, J. North, P. Sibbons, A. M. Seifalian, K. J. Wood, M. A. Birchall, and P. De Coppi. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc. Natl. Acad. Sci. USA 110:14360–14365, 2013.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Folkman, J. H., and M. Hochberg. Self regulation of growth in three dimensions. J. Exp. Med. 138:745–753, 1973.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Foster, L. J., and E. Karsten. A chitosan based, laser activated thin film surgical adhesive, ‘SurgiLux’: preparation and demonstration. J. Vis. Exp JoVE 68:xv–xvii, 2012.Google Scholar
  29. 29.
    Frisch, S. M., and H. Francis. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124:619–626, 1994.PubMedGoogle Scholar
  30. 30.
    Gabella, G. Structure of smooth muscles. In: Handbook of Experimental Pharmacology, Vol. 111, edited by L. Szekeres, and J. G. Y. Papp. Berlin: Springer, 1994, pp. 3–34.Google Scholar
  31. 31.
    Geerligs, M., L. van Breemen, G. Peters, P. Ackermans, F. Baaijens, and C. Oomens. In vitro indentation to determine the mechanical properties of epidermis. J. Biomech. 44:1176–1181, 2011.PubMedGoogle Scholar
  32. 32.
    Geller, H. M., and J. W. Fawcett. Building a bridge: Engineering spinal cord repair. Exp. Neurol. 174:125–136, 2002.PubMedGoogle Scholar
  33. 33.
    Ghanaati, S., M. J. Webber, R. E. Unger, C. Orth, J. F. Hulvat, S. E. Kiehna, M. Barbeck, A. Rasic, S. I. Stupp, and C. J. Kirkpatrick. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials 30:6202–6212, 2009.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Ghanaati, S., S. Fuchs, M. J. Webber, C. Orth, M. Barbeck, M. E. Gomes, R. L. Reis, and C. J. Kirkpatrick. Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts. J. Tissue Eng. Regen. Med. 5:e136–e143, 2011.PubMedGoogle Scholar
  35. 35.
    Ghanaati, S., R. E. Unger, M. J. Webber, M. Barbeck, C. Orth, J. A. Kirkpatrick, P. Booms, A. Motta, C. Migliaresi, R. A. Sader, and C. J. Kirkpatrick. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials 32:8150–8160, 2011.PubMedGoogle Scholar
  36. 36.
    Giano, M. C., D. J. Pochan, and J. P. Schneider. Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32:6471–6477, 2011.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Green, H., O. Kehinde, and J. Thomas. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 76:5665–5668, 1979.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Guo, Y., T. Yuan, Z. Xiao, P. Tang, Y. Xiao, Y. Fan, and X. Zhang. Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 23:2267–2279, 2012.PubMedGoogle Scholar
  39. 39.
    Guvendiren, M., and J. A. Burdick. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3:792, 2012.PubMedGoogle Scholar
  40. 40.
    Heeschen, C., R. Lehmann, J. Honold, B. Assmus, A. Aicher, D. H. Walter, H. Martin, A. M. Zeiher, and S. Dimmeler. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109:1615–1622, 2004.PubMedGoogle Scholar
  41. 41.
    Herring, G. M. The chemical structure of tendon, cartilage, dentin and bone matrix. Clin. Orthop. Relat. Res. 60:261–299, 1968.PubMedGoogle Scholar
  42. 42.
    Hillel, A. T., S. Unterman, Z. Nahas, B. Reid, J. M. Coburn, J. Axelman, J. J. Chae, Q. Guo, R. Trow, A. Thomas, Z. Hou, S. Lichtsteiner, D. Sutton, C. Matheson, P. Walker, N. David, S. Mori, J. M. Taube, and J. H. Elisseeff. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med. 3:93ra67, 2011.PubMedGoogle Scholar
  43. 43.
    Holmes, C., M. Tabrizian, and P. O. Bagnaninchi. Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds. J. Tissue Eng. Regen. Med. 2013. doi: 10.1002/term.1687.
  44. 44.
    Holmes, C., J. Daoud, P. O. Bagnaninchi, and M. Tabrizian. Polyelectrolyte multilayer coating of 3D scaffolds enhances tissue growth and gene delivery: non-invasive and label-free assessment. Adv. Healthc. Mater. 3:572–580, 2014.PubMedGoogle Scholar
  45. 45.
    Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543, 2000.PubMedGoogle Scholar
  46. 46.
    Jaklenec, A., A. Stamp, E. Deweerd, A. Sherwin, and R. Langer. Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Eng. Part B Rev. 18:155–166, 2012.PubMedGoogle Scholar
  47. 47.
    Kadler, K. E., D. F. Holmes, J. A. Trotter, and J. A. Chapman. Collagen fibril formation. Biochem. J. 316:1–11, 1996.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Kanematsu, A., S. Yamamoto, M. Ozeki, T. Noguchi, I. Kanatani, O. Ogawa, and Y. Tabata. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25:4513–4520, 2004.PubMedGoogle Scholar
  49. 49.
    Katta, J., T. Stapleton, E. Ingham, Z. M. Jin, and J. Fisher. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. Proc. Inst. Mech. Eng. Part H 222:1–11, 2008.Google Scholar
  50. 50.
    Kazemi, M. and L. P. Li. A viscoelastic poromechanical model of the knee joint in large compression. Med. Eng. Phys. 36:998–1006, 2014.Google Scholar
  51. 51.
    Keane, T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781, 2012.PubMedGoogle Scholar
  52. 52.
    Khan, O. F., and M. V. Sefton. Patterning collagen/poloxamine-methacrylate hydrogels for tissue-engineering-inspired microfluidic and laser lithography applications. J. Biomater. Sci. Polym. Ed. 22:2499–2514, 2011.Google Scholar
  53. 53.
    Khan, O. F., D. N. Voice, B. M. Leung, and M.V. Sefton. A novel high-speed production process to create modular components for the bottom-up assembly of large-scale tissue-engineered constructs. Adv. Healthc. Mater. 2014. doi: 10.1002/adhm.201400150.
  54. 54.
    Kim, K. D., and N. M. Wright. Polyethylene glycol hydrogel spinal sealant (duraseal spinal sealant) as an adjunct to sutured dural repair in the spine: results of a prospective, multicenter, randomized controlled study. Spine 36:1906–1912, 2011.PubMedGoogle Scholar
  55. 55.
    Kim, A. M., C. M. Tingen, and T. K. Woodruff. Sex bias in trials and treatment must end. Nature 465:688–689, 2010.PubMedGoogle Scholar
  56. 56.
    Langer, R. A personal account of translating discoveries in an academic lab. Nat. Biotechnol. 31:487–489, 2013.PubMedGoogle Scholar
  57. 57.
    Langer, R., and J. P. Vacanti. Tissue engineering. Science. 260:920–926, 1993.PubMedGoogle Scholar
  58. 58.
    Lee, H. S., S. W. Teng, H. C. Chen, W. Lo, Y. Sun, T. Y. Lin, L. L. Chiou, C. C. Jiang, and C. Y. Dong. Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. Tissue Eng. 12:2835–2841, 2006.PubMedGoogle Scholar
  59. 59.
    Lee, M. H., J. A. Arcidiacono, A. M. Bilek, J. J. Wille, C. A. Hamill, K. M. Wonnacott, M. A. Wells, and S. S. Oh. Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the united states. Tissue Eng. Part. B Rev. 16:41–54, 2010.PubMedGoogle Scholar
  60. 60.
    Lee, J. E., S. Park, M. Park, M. H. Kim, C. G. Park, S. H. Lee, S. Y. Choi, B. H. Kim, H. J. Park, J. H. Park, C. Y. Heo, and Y. B. Choy. Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief. Acta Biomater. 9:8318–8327, 2013.PubMedGoogle Scholar
  61. 61.
    L’Heureux, N., N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12:361–365, 2006.PubMedCentralPubMedGoogle Scholar
  62. 62.
    L’Heureux, N., T. N. McAllister, and L. M. de la Fuente. Tissue-engineered blood vessel for adult arterial revascularization. New Engl. J. Med. 357:1451–1453, 2007.PubMedGoogle Scholar
  63. 63.
    Lieber, R. L., and S. C. Bodine-Fowler. Skeletal muscle mechanics: Implications for rehabilitation. Phys. Ther. 73:844–856, 1993.PubMedGoogle Scholar
  64. 64.
    Linke, W. A., and N. Hamdani. Gigantic business: titin properties and function through thick and thin. Circ. Res. 114:1052–1068, 2014.PubMedGoogle Scholar
  65. 65.
    Liu, J., J. Hilderink, T. A. Groothuis, C. Otto, C. A. van Blitterswijk, and J. de Boer. Monitoring nutrient transport in tissue-engineered grafts. J. Tissue Eng. Regen. Med. 2013.Google Scholar
  66. 66.
    Lucero, H. A., and H. M. Kagan. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell. Mol. Life Sci. 63:2304–2316, 2006.PubMedGoogle Scholar
  67. 67.
    Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, T. A. Cogan, A. Dodson, J. Martorell, S. Bellini, P. P. Parnigotto, S. C. Dickinson, A. P. Hollander, S. Mantero, M. T. Conconi, and M. A. Birchall. Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030, 2008.PubMedGoogle Scholar
  68. 68.
    Macdonald, M. L., R. E. Samuel, N. J. Shah, R. F. Padera, Y. M. Beben, and P. T. Hammond. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32:1446–1453, 2011.PubMedCentralPubMedGoogle Scholar
  69. 69.
    MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature 445:874–880, 2007.PubMedGoogle Scholar
  70. 70.
    Mangera, A., A. J. Bullock, S. Roman, C. R. Chapple, and S. MacNeil. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU Int. 112:674–685, 2013.PubMedGoogle Scholar
  71. 71.
    Marston, W. A., J. Hanft, P. Norwood, and R. Pollak. The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 26:1701–1705, 2003.PubMedGoogle Scholar
  72. 72.
    Mathur, A. B., A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34:1545–1553, 2001.PubMedGoogle Scholar
  73. 73.
    Mestas, J., and C. C. Hughes. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172:2731–2738, 2004.PubMedGoogle Scholar
  74. 74.
    Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D. H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Morelli, A. E., and A. W. Thomson. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol. 7:610–621, 2007.PubMedGoogle Scholar
  76. 76.
    Nillesen, S. T., P. J. Geutjes, R. Wismans, J. Schalkwijk, W. F. Daamen, and T. H. van Kuppevelt. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF-2 and VEGF. Biomaterials 28:1123–1131, 2007.PubMedGoogle Scholar
  77. 77.
    Nishida, K. Tissue engineering of the cornea. Cornea 22:S28–S34, 2003.PubMedGoogle Scholar
  78. 78.
    Odian, G. G. Principles of Polymerization. Hoboken, NJ: Wiley-Interscience, 2004.Google Scholar
  79. 79.
    Ommaya, A. K. Mechanical properties of tissues of the nervous system. J. Biomech. 1:127–138, 1968.PubMedGoogle Scholar
  80. 80.
    Ott, H. C., T. S. Matthiesen, S. K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14:213–221, 2008.PubMedGoogle Scholar
  81. 81.
    Ott, H. C., B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, and J. P. Vacanti. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16:927–933, 2010.PubMedGoogle Scholar
  82. 82.
    Oxlund, H., J. Manschot, and A. Viidik. The role of elastin in the mechanical properties of skin. J. Biomech. 21:213–218, 1988.PubMedGoogle Scholar
  83. 83.
    Park, K. M., and H. M. Woo. Systemic decellularization for multi-organ scaffolds in rats. Transpl. Proc. 44:1151–1154, 2012.Google Scholar
  84. 84.
    Paul, S. M., D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht. How to improve r&d productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9:203–214, 2010.PubMedGoogle Scholar
  85. 85.
    Petersen, O. W., L. Ronnov-Jessen, A. R. Howlett, and M. J. Bissell. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. USA 89:9064–9068, 1992.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Place, E. S., J. H. George, C. K. Williams, and M. M. Stevens. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 38:1139–1151, 2009.PubMedGoogle Scholar
  87. 87.
    Price, A. P., L. M. Godin, A. Domek, T. Cotter, J. D’Cunha, D. A. Taylor, and A. Panoskaltsis-Mortari. Automated decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng. Part C. 2014.Google Scholar
  88. 88.
    Restifo, N. P., F. M. Marincola, Y. Kawakami, J. Taubenberger, J. R. Yannelli, and S. A. Rosenberg. Loss of functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst. 88:100–108, 1996.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Rho, J.-Y., L. Kuhn-Spearing, and P. Zioupos. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20:92–102, 1998.PubMedGoogle Scholar
  90. 90.
    Saher, G., B. Brugger, C. Lappe-Siefke, W. Mobius, R. Tozawa, M. C. Wehr, F. Wieland, S. Ishibashi, and K. A. Nave. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8:468–475, 2005.PubMedGoogle Scholar
  91. 91.
    Salinas, C. N., and K. S. Anseth. The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29:2370–2377, 2008.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Salvatori, M., R. Katari, T. Patel, A. Peloso, J. Mugweru, K. Owusu, and G. Orlando. Extracellular matrix scaffold technology for bioartificial pancreas engineering: State of the art and future challenges. J. Diabetes Sci. Technol. 8:159–169, 2014.PubMedGoogle Scholar
  93. 93.
    Seok, J., H. S. Warren, A. G. Cuenca, M. N. Mindrinos, H. V. Baker, W. Xu, D. R. Richards, G. P. McDonald-Smith, H. Gao, L. Hennessy, C. C. Finnerty, C. M. Lopez, S. Honari, E. E. Moore, J. P. Minei, J. Cuschieri, P. E. Bankey, J. L. Johnson, J. Sperry, A. B. Nathens, T. R. Billiar, M. A. West, M. G. Jeschke, M. B. Klein, R. L. Gamelli, N. S. Gibran, B. H. Brownstein, C. Miller-Graziano, S. E. Calvano, P. H. Mason, J. P. Cobb, L. G. Rahme, S. F. Lowry, R. V. Maier, L. L. Moldawer, D. N. Herndon, R. W. Davis, W. Xiao, and R. G. Tompkins. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110:3507–3512, 2013.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Shah, N. J., M. L. Macdonald, Y. M. Beben, R. F. Padera, R. E. Samuel, and P. T. Hammond. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32:6183–6193, 2011.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Shah, N. J., M. N. Hyder, J. S. Moskowitz, M. A. Quadir, S. W. Morton, H. J. Seeherman, R. F. Padera, M. Spector, and P. T. Hammond. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci. Transl. Med. 5:191ra183, 2013.Google Scholar
  96. 96.
    Sharma, B., S. Fermanian, M. Gibson, S. Unterman, D. A. Herzka, B. Cascio, J. Coburn, A. Y. Hui, N. Marcus, G. E. Gold, and J. H. Elisseeff. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci. Transl. Med. 5:167ra166, 2013.Google Scholar
  97. 97.
    Shen, Y. H., M. S. Shoichet, and M. Radisic. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater. 4:477–489, 2008.PubMedGoogle Scholar
  98. 98.
    Shultz, L. D., F. Ishikawa, and D. L. Greiner. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7:118–130, 2007.PubMedGoogle Scholar
  99. 99.
    Singh, A., Y. Lu, C. Chen, and J. M. Cavanaugh. Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J. Biomech. 39:1669–1676, 2006.PubMedGoogle Scholar
  100. 100.
    Song, J. J., J. P. Guyette, S. E. Gilpin, G. Gonzalez, J. P. Vacanti, and H. C. Ott. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19:646–651, 2013.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Starzl, T. E., N. Murase, K. Abu-Elmagd, E. A. Gray, R. Shapiro, B. Eghtesad, R. J. Corry, M. L. Jordan, P. Fontes, T. Gayowski, G. Bond, V. P. Scantlebury, S. Potdar, P. Randhawa, T. Wu, A. Zeevi, M. A. Nalesnik, J. Woodward, A. Marcos, M. Trucco, A. J. Demetris, and J. J. Fung. Tolerogenic immunosuppression for organ transplantation. Lancet 361:1502–1510, 2003.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Sussman, E. M., M. C. Halpin, J. Muster, R. T. Moon, and B. D. Ratner. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 1–9, 2013.Google Scholar
  103. 103.
    Thomas, P. K. The connective tissue of peripheral nerve: an electron microscope study. J. Anat. 97:35–44, 1963.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Tzanakakis, E. S., D. J. Hess, T. D. Sielaff, and W. S. Hu. Extracorporeal tissue engineered liver-assist devices. Annu. Rev. Biomed. Eng. 2:607–632, 2000.PubMedGoogle Scholar
  105. 105.
    Unger, R. E., K. Peters, Q. Huang, A. Funk, D. Paul, and C. J. Kirkpatrick. Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Biomaterials 26:3461–3469, 2005.PubMedGoogle Scholar
  106. 106.
    Utzschneider, S., A. C. Paulus, C. Schroder, and V. Jansson. Possibilities and limits of modern polyethylenes: with respect to the application profile. Der Orthopade 43:515–521, 2014.PubMedGoogle Scholar
  107. 107.
    Uygun, B. E., A. Soto-Gutierrez, H. Yagi, M. L. Izamis, M. A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M. L. Yarmush, and K. Uygun. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16:814–820, 2010.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Wang, J. H. Mechanobiology of tendon. J. Biomech. 39:1563–1582, 2006.PubMedGoogle Scholar
  109. 109.
    Wang, T. Y., K. A. Bruggeman, R. K. Sheean, B. J. Turner, D. R. Nisbet, and C. L. Parish. Characterisation of the stability and bio-functionality of tethered proteins on bioengineered scaffolds: implications for stem cell biology and tissue repair. J. Biol. Chem. 289:15044–15051, 2014.PubMedGoogle Scholar
  110. 110.
    Webber, M. J., J. Tongers, C. J. Newcomb, K. T. Marquardt, J. Bauersachs, D. W. Losordo, and S. I. Stupp. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc. Natl. Acad. Sci. USA 108:13438–13443, 2011.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Witkowski, P., H. Sondermeijer, M. A. Hardy, D. C. Woodland, K. Lee, G. Bhagat, K. Witkowski, F. See, A. Rana, A. Maffei, S. Itescu, and P. E. Harris. Islet grafting and imaging in a bioengineered intramuscular space. Transplantation 88:1065–1074, 2009.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Wu, W., X. Feng, T. Mao, H. W. Ouyang, G. Zhao, and F. Chen. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Br. J. Oral. Maxillofac. Surg. 45:272–278, 2007.PubMedGoogle Scholar
  113. 113.
    Yannas, I. V., J. F. Burke, D. P. Orgill, and E. M. Skrabut. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215:174–176, 1982.PubMedGoogle Scholar
  114. 114.
    Yeong, W. Y., C. K. Chua, K. F. Leong, and M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22:643–652, 2004.PubMedGoogle Scholar
  115. 115.
    Zhang, L., Z. Cao, T. Bai, L. Carr, J. R. Ella-Menye, C. Irvin, B. D. Ratner, and S. Jiang. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31:553–556, 2013.PubMedGoogle Scholar
  116. 116.
    Zhao, L., V. K. Lee, S. S. Yoo, G. Dai, and X. Intes. The integration of 3-d cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33:5325–5332, 2012.PubMedCentralPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Matthew J. Webber
    • 1
  • Omar F. Khan
    • 1
  • Stefanie A. Sydlik
    • 1
  • Benjamin C. Tang
    • 1
  • Robert Langer
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations