Annals of Biomedical Engineering

, Volume 43, Issue 3, pp 577–592 | Cite as

Biologic Scaffolds for Regenerative Medicine: Mechanisms of In vivo Remodeling

Article

Abstract

Successful regenerative medicine strategies for functional tissue reconstruction include the in situ placement of acellular materials composed of the extracellular matrix (ECM) or individual components of the ECM. The composition and ultrastructure of these materials vary depending on multiple factors including the tissue source and species from which the materials are harvested, the methods of manufacture, the efficiency of decellularization, post-processing modifications such as chemical cross-linking or solubilization, and the methods of terminal sterilization. Appropriately configured materials have the ability to modulate different stages of the healing response by inducing a shift from a process of inflammation and scar tissue formation to one of constructive remodeling and functional tissue restoration. The events that facilitate such a dramatic change during the biomaterial-host interaction are complex and necessarily involve both the immune system and mechanisms of stem cell recruitment, growth, and differentiation. The present manuscript reviews the composition of biologic scaffolds, the methods and recommendations for manufacture, the mechanisms of the biomaterial–host interaction, and the clinical application of this regenerative medicine approach.

Keywords

Extracellular matrix Biomaterial Tissue repair Constructive remodeling Macrophage response 

References

  1. 1.
    Agrawal, V., J. Kelly, S. Tottey, K. A. Daly, S. A. Johnson, B. F. Siu, J. Reing, and S. F. Badylak. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng. Part A 17(23–24):3033–3044, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Aller, M. A., J. I. Arias, L. A. Arraez-Aybar, C. Gilsanz, and J. Arias. Wound healing reaction: a switch from gestation to senescence. World J. Exp. Med. 4(2):16–26, 2014.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Ambrosio, F., S. L. Wolf, A. Delitto, G. K. Fitzgerald, S. F. Badylak, M. L. Boninger, and A. J. Russell. The emerging relationship between regenerative medicine and physical therapeutics. Phys. Ther. 90(12):1807–1814, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Badylak, S. F. The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell Dev. Biol. 13(5):377–383, 2002.CrossRefPubMedGoogle Scholar
  5. 5.
    Badylak, S. F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann. Biomed. Eng. 42(7):1517–1527, 2014.CrossRefPubMedGoogle Scholar
  6. 6.
    Badylak, S. F., D. O. Freytes, and T. W. Gilbert. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5(1):1–13, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Badylak, S. F., T. Hoppo, A. Nieponice, T. W. Gilbert, J. M. Davison, and B. A. Jobe. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng. Part A 17(11–12):1643–1650, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Badylak, S. F., D. A. Vorp, A. R. Spievack, A. Simmons-Byrd, J. Hanke, D. O. Freytes, A. Thapa, T. W. Gilbert, and A. Nieponice. Esophageal reconstruction with ECM and muscle tissue in a dog model. J. Surg. Res. 128(1):87–97, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Baker, S. M., R. V. Sugars, M. Wendel, A. J. Smith, R. J. Waddington, P. R. Cooper, and A. J. Sloan. TGF-beta/extracellular matrix interactions in dentin matrix: a role in regulating sequestration and protection of bioactivity. Calcif. Tissue Int. 85(1):66–74, 2009.CrossRefPubMedGoogle Scholar
  10. 10.
    Birch, H. L., C. T. Thorpe, and A. P. Rumian. Specialisation of extracellular matrix for function in tendons and ligaments. Muscles Ligaments Tendons J. 3(1):12–22, 2013.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Bissell, M. J., and J. Aggeler. Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog. Clin. Biol. Res. 249:251–262, 1987.PubMedGoogle Scholar
  12. 12.
    Brennan, E. P., J. Reing, D. Chew, J. M. Myers-Irvin, E. J. Young, and S. F. Badylak. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 12(10):2949–2955, 2006.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8(3):978–987, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Brown, B. N., B. D. Ratner, S. B. Goodman, S. Amar, and S. F. Badylak. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Butterfield, J. L. 440 consecutive immediate, implant-based, single-surgeon breast reconstructions in 281 patients: a comparison of early outcomes and costs between surgimend fetal bovine and alloderm human cadaveric acellular dermal matrices. Plast. Reconstr. Surg. 131(5):940–951, 2013.CrossRefPubMedGoogle Scholar
  17. 17.
    Carey, L. E., C. L. Dearth, S. A. Johnson, R. Londono, C. J. Medberry, K. A. Daly, and S. F. Badylak. In vivo degradation of 14c-labeled porcine dermis biologic scaffold. Biomaterials 35(29):8297–8304, 2014.Google Scholar
  18. 18.
    Chattopadhyay, S., and R. T. Raines. Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833, 2014.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen, M., M. P. Marinkovich, A. Veis, X. Cai, C. N. Rao, E. A. O’Toole, and D. T. Woodley. Interactions of the amino-terminal noncollagenous (NC1) domain of Type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin. J. Biol. Chem. 272(23):14516–14522, 1997.CrossRefPubMedGoogle Scholar
  20. 20.
    Clark, R. A., N. E. Wikner, D. E. Doherty, and D. A. Norris. Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment. J. Biol. Chem. 263(24):12115–12123, 1988.PubMedGoogle Scholar
  21. 21.
    Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Crapo, P. M., C. J. Medberry, J. E. Reing, S. Tottey, Y. van der Merwe, K. E. Jones, and S. F. Badylak. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33(13):3539–3547, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Daly, K. A., et al. The host response to endotoxin-contaminated dermal matrix. Tissue Eng. Part A 18(11–12):1293–1303, 2012.CrossRefPubMedGoogle Scholar
  24. 24.
    Davis, G. E., K. J. Bayless, M. J. Davis, and G. A. Meininger. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156(5):1489–1498, 2000.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    DiPietro, L. A. Angiogenesis and scar formation in healing wounds. Curr. Opin. Rheumatol. 25(1):87–91, 2013.CrossRefPubMedGoogle Scholar
  26. 26.
    Giannelli, G., J. Falk-Marzillier, O. Schiraldi, W. G. Stetler-Stevenson, and V. Quaranta. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277(5323):225–228, 1997.CrossRefPubMedGoogle Scholar
  27. 27.
    Gilbert, T. W., A. M. Stewart-Akers, A. Simmons-Byrd, and S. F. Badylak. Degradation and remodeling of small intestinal submucosa in canine achilles tendon repair. J. Bone Joint Surg. Am. 89(3):621–630, 2007.CrossRefPubMedGoogle Scholar
  28. 28.
    Groulx, J. F., D. Gagne, Y. D. Benoit, D. Martel, N. Basora, and J. F. Beaulieu. Collagen VI is a basement membrane component that regulates epithelial cell–fibronectin interactions. Matrix Biol. 30(3):195–206, 2011.CrossRefPubMedGoogle Scholar
  29. 29.
    Hodde, J. P., S. F. Badylak, A. O. Brightman, and S. L. Voytik-Harbin. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng. 2(3):209–217, 1996.CrossRefPubMedGoogle Scholar
  30. 30.
    Hodde, J., R. Record, R. Tullius, and S. Badylak. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 23(8):1841–1848, 2002.CrossRefPubMedGoogle Scholar
  31. 31.
    Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Iozzo, R. V., I. R. Cohen, S. Grassel, and A. D. Murdoch. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302(Pt 3):625–639, 1994.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Iozzo, R. V., and A. D. Murdoch. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10(5):598–614, 1996.PubMedGoogle Scholar
  34. 34.
    Johnson, T. D., and K. L. Christman. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin. Drug Deliv. 10(1):59–72, 2013.CrossRefPubMedGoogle Scholar
  35. 35.
    Johnson, T. D., J. A. Dequach, R. Gaetani, J. Ungerleider, D. Elhag, V. Nigam, A. Behfar, and K. L. Christman. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater. Sci. 2014:60283D, 2014.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Keane, T. J., R. Londono, R. M. Carey, C. A. Carruthers, J. E. Reing, C. L. Dearth, A. D’Amore, C. J. Medberry, and S. F. Badylak. Preparation and characterization of a biologic scaffold from esophageal mucosa. Biomaterials 34(28):6729–6737, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Keane, T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33(6):1771–1781, 2012.CrossRefPubMedGoogle Scholar
  38. 38.
    Kissane, N. A., and K. M. Itani. A decade of ventral incisional hernia repairs with biologic acellular dermal matrix: what have we learned? Plast. Reconstr. Surg. 130(5 Suppl 2):194S–202S, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Korpos, E., C. Wu, J. Song, R. Hallmann, and L. Sorokin. Role of the extracellular matrix in lymphocyte migration. Cell Tissue Res. 339(1):47–57, 2010.CrossRefPubMedGoogle Scholar
  40. 40.
    Ladowski, J. M., and J. S. Ladowski. Retrospective analysis of bovine pericardium (vascu-guard) for patch closure in carotid endarterectomies. Ann. Vasc. Surg. 25(5):646–650, 2011.CrossRefPubMedGoogle Scholar
  41. 41.
    Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12):677–686, 2004.CrossRefPubMedGoogle Scholar
  42. 42.
    Maxson, S., E. A. Lopez, D. Yoo, A. Danilkovitch-Miagkova, and M. A. Leroux. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl. Med. 1(2):142–149, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Medberry, C. J., et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34(4):1033–1040, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Mills, S. J., A. J. Cowin, and P. Kaur. Pericytes, mesenchymal stem cells and the wound healing process. Cells 2(3):621–634, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Mills, C. D., K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164(12):6166–6173, 2000.CrossRefPubMedGoogle Scholar
  46. 46.
    Mogford, J. E., G. E. Davis, S. H. Platts, and G. A. Meininger. Vascular smooth muscle alpha v beta 3 integrin mediates arteriolar vasodilation in response to RGD peptides. Circ. Res. 79(4):821–826, 1996.CrossRefPubMedGoogle Scholar
  47. 47.
    Mosser, D. M. The many faces of macrophage activation. J. Leukoc. Biol. 73(2):209–212, 2003.CrossRefPubMedGoogle Scholar
  48. 48.
    Nauseef, W. M., and N. Borregaard. Neutrophils at work. Nat. Immunol. 15(7):602–611, 2014.CrossRefPubMedGoogle Scholar
  49. 49.
    Nieponice, A., F. F. Ciotola, F. Nachman, B. A. Jobe, T. Hoppo, R. Londono, S. Badylak, and A. E. Badaloni. Patch esophagoplasty: esophageal reconstruction using biologic scaffolds. Ann. Thorac. Surg. 97(1):283–288, 2014.CrossRefPubMedGoogle Scholar
  50. 50.
    Nieponice, A., T. W. Gilbert, S. A. Johnson, N. J. Turner, and S. F. Badylak. Bone marrow-derived cells participate in the long-term remodeling in a mouse model of esophageal reconstruction. J. Surg. Res. 182(1):e1–e7, 2013.CrossRefPubMedGoogle Scholar
  51. 51.
    Ponce, M. L., M. Nomizu, M. C. Delgado, Y. Kuratomi, M. P. Hoffman, S. Powell, Y. Yamada, H. K. Kleinman, and K. M. Malinda. Identification of endothelial cell binding sites on the laminin gamma 1 chain. Circ. Res. 84(6):688–694, 1999.CrossRefPubMedGoogle Scholar
  52. 52.
    Record, R. D., D. Hillegonds, C. Simmons, R. Tullius, F. A. Rickey, D. Elmore, and S. F. Badylak. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22(19):2653–2659, 2001.CrossRefPubMedGoogle Scholar
  53. 53.
    Reing, J. E., et al. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng. Part A 15(3):605–614, 2009.CrossRefPubMedGoogle Scholar
  54. 54.
    Ricard-Blum, S., and L. Ballut. Matricryptins derived from collagens and proteoglycans. Front Biosci. (Landmark Ed) 16:674–697, 2011.CrossRefGoogle Scholar
  55. 55.
    Rider, P., Y. Carmi, O. Guttman, A. Braiman, I. Cohen, E. Voronov, M. R. White, C. A. Dinarello, and R. N. Apte. IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J. Immunol. 187(9):4835–4843, 2011.CrossRefPubMedGoogle Scholar
  56. 56.
    Ruoslahti, E., E. G. Hayman, M. Pierschbacher, and E. Engvall, Fibronectin. Purification, immunochemical properties, and biological activities. Methods Enzymol. 82 Pt A:803–831, 1982.Google Scholar
  57. 57.
    Sarikaya, A., R. Record, C. C. Wu, B. Tullius, S. Badylak, and M. Ladisch. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 8(1):63–71, 2002.CrossRefPubMedGoogle Scholar
  58. 58.
    Sawkins, M. J., et al. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater. 9(8):7865–7873, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Scholl, F. G., M. M. Boucek, K. C. Chan, L. Valdes-Cruz, and R. Perryman. Preliminary experience with cardiac reconstruction using decellularized porcine extracellular matrix scaffold: human applications in congenital heart disease. World J. Pediatr. Congenit. Heart Surg. 1(1):132–136, 2010.CrossRefPubMedGoogle Scholar
  60. 60.
    Schonherr, E., M. Broszat, E. Brandan, P. Bruckner, and H. Kresse. Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to Type I collagen. Arch. Biochem. Biophys. 355(2):241–248, 1998.CrossRefPubMedGoogle Scholar
  61. 61.
    Schonherr, E., H. Hausser, L. Beavan, and H. Kresse. Decorin-Type I collagen interaction. Presence of separate core protein-binding domains. J. Biol. Chem. 270(15):8877–8883, 1995.CrossRefPubMedGoogle Scholar
  62. 62.
    Schwarzbauer, J. E., and J. L. Sechler. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr. Opin. Cell Biol. 11(5):622–627, 1999.CrossRefPubMedGoogle Scholar
  63. 63.
    Seiffert, D., and J. W. Smith. The cell adhesion domain in plasma vitronectin is cryptic. J. Biol. Chem. 272(21):13705–13710, 1997.CrossRefPubMedGoogle Scholar
  64. 64.
    Seif-Naraghi, S. B., et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5(173):173ra25, 2013.Google Scholar
  65. 65.
    Sicari, B. M., et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6(234):234ra58, 2014.Google Scholar
  66. 66.
    Sicari, B. M., et al. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials 33(22):5524–5533, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Slack, S. M., J. L. Bohnert, and T. A. Horbett. The effects of surface chemistry and coagulation factors on fibrinogen adsorption from plasma. Ann. N. Y. Acad. Sci. 516:223–243, 1987.CrossRefPubMedGoogle Scholar
  68. 68.
    Smaniotto, S., D. A. Mendes-da-Cruz, C. E. Carvalho-Pinto, L. M. Araujo, M. Dardenne, and W. Savino. Combined role of extracellular matrix and chemokines on peripheral lymphocyte migration in growth hormone transgenic mice. Brain Behav. Immun. 24(3):451–461, 2010.CrossRefPubMedGoogle Scholar
  69. 69.
    Soto-Gutierrez, A., et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng. Part C 17(6):677–686, 2011.CrossRefGoogle Scholar
  70. 70.
    Tran Cao, H. S., C. Tokin, J. Konop, H. Ojeda-Fournier, J. Chao, and S. L. Blair. A preliminary report on the clinical experience with alloderm in breast reconstruction and its radiologic appearance. Am. Surg. 76(10):1123–1126, 2010.PubMedGoogle Scholar
  71. 71.
    Turner, M. D., B. Nedjai, T. Hurst, and D. J. Pennington. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 2014.Google Scholar
  72. 72.
    Valentin, J. E., A. M. Stewart-Akers, T. W. Gilbert, and S. F. Badylak. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng. Part A 15(7):1687–1694, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    van der Rest, M., and R. Garrone. Collagen family of proteins. FASEB J. 5(13):2814–2823, 1991.PubMedGoogle Scholar
  74. 74.
    Vorotnikova, E., et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 29(8):690–700, 2010.CrossRefPubMedGoogle Scholar
  75. 75.
    Wang, J., and H. Arase. Regulation of immune responses by neutrophils. Ann. N. Y. Acad. Sci. 1319(1):66–81, 2014.CrossRefPubMedGoogle Scholar
  76. 76.
    Whitelock, J. M., A. D. Murdoch, R. V. Iozzo, and P. A. Underwood. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271(17):10079–10086, 1996.CrossRefPubMedGoogle Scholar
  77. 77.
    Wolf, M. T., K. A. Daly, E. P. Brennan-Pierce, S. A. Johnson, C. A. Carruthers, A. D’Amore, S. P. Nagarkar, S. S. Velankar, and S. F. Badylak. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33(29):7028–7038, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Wolf, M. T., K. A. Daly, J. E. Reing, and S. F. Badylak. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33(10):2916–2925, 2012.CrossRefPubMedGoogle Scholar
  79. 79.
    Yamaguchi, Y., D. M. Mann, and E. Ruoslahti. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346(6281):281–284, 1990.CrossRefPubMedGoogle Scholar
  80. 80.
    Zamarron, C., M. H. Ginsberg, and E. F. Plow. Monoclonal antibodies specific for a conformationally altered state of fibrinogen. Thromb. Haemost. 64(1):41–46, 1990.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  1. 1.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA
  2. 2.School of MedicineUniversity of PittsburghPittsburghUSA
  3. 3.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  4. 4.Department of SurgeryUniversity of PittsburghPittsburghUSA

Personalised recommendations