Annals of Biomedical Engineering

, Volume 43, Issue 1, pp 3–15 | Cite as

Physiological Significance of Helical Flow in the Arterial System and its Potential Clinical Applications

  • Xiao Liu
  • Anqiang Sun
  • Yubo FanEmail author
  • Xiaoyan DengEmail author


Helical flow in the human aorta is possibly a typical example of ‘form follows function’ in the vascular system. The helical blood flow may provide guaranties for the inner surface of the ascending aortic wall to get smooth and even washing by the blood so that atherosclerotic plaques can hardly form in the area of the ascending aorta. It has been documented that the phenomenon of helical flow of blood is not just localized in the ascending aorta, it also exists in several large arteries and veins as well. Preliminary studies demonstrated the widely existing helical flow might play positive physiological roles in facilitating blood flow transport, suppressing disturbed blood flow, preventing the accumulation of atherogenic low density lipoproteins on the luminal surfaces of arteries, enhancing oxygen transport from the blood to the arterial wall and reducing the adhesion of blood cells on the arterial surface. These roles of helical blood flow may lessen the burden of arteries and protect the arteries from the pathology of atherosclerosis, thrombosis, and intimal hyperplasia. The great development of time-resolved three-dimensional phase contrast MRI (flow-sensitive 4D-MRI) and the advent of dimensionless indices such as helical flow index proposed to characterize helical flow make clinic quantification of the helical flow in the human large arteries possible. Moreover, researchers probed into the possibility to apply the mechanism of helical flow to the design of vascular interventions to reduce thrombus formation and intimal hyperplasia caused by abnormal flow conditions.


Helical flow Shear stress Atherosclerosis Thrombosis Intimal hyperplasia Disturbed flow Arterial graft Arterial bypass Arterial stent Flow-sensitive 4D-MRI 



This work is supported by Grants-in-Aid from the National Natural Science Research Foundation of China (No. 11332003, 31200703, 11102014, 11202016, 11421202), Specialized Research Fund for the Doctoral Program of Higher Education (20121102120038), Special Fund for Excellent Doctor Degree Dissertation of Beijing (20131000601) and the 111 Project (B13003).


  1. 1.
    Ali, S. Pressure drop correlations for flow through regular helical coil tubes. Fluid Dyn. Res. 28:295–310, 2001.Google Scholar
  2. 2.
    Bachler, P., N. Pinochet, J. Sotelo, G. Crelier, P. Irarrazaval, C. Tejos, and S. Uribe. Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Magn. Reson. Imaging 31:178–188, 2013.PubMedGoogle Scholar
  3. 3.
    Barker A. J., P. van Ooij, K. Bandi, J. Garcia, M. Albaghdadi, P. McCarthy, R. O. Bonow, J. Carr, J. Collins, S. C. Malaisrie, and M. Markl. Viscous energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 2013.Google Scholar
  4. 4.
    Bechara, C. F. Comparing short and midterm Infrainguinal bypass patency rates between two ePTFE prosthetic grafts: spiral laminar flow and propaten. Vasc. Dis. Manag. 11:E54–E58, 2014.Google Scholar
  5. 5.
    Bogren, H. G., and M. H. Buonocore. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J. Magn. Reson. Imaging 10:861–869, 1999.PubMedGoogle Scholar
  6. 6.
    Burk, J., P. Blanke, Z. Stankovic, A. Barker, M. Russe, J. Geiger, A. Frydrychowicz, M. Langer, and M. Markl. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J. Cardiovasc. Magn. Reson. 14:84, 2012.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Caro, C. G., N. J. Cheshire, and N. Watkins. Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs. J. R. Soc. Interface 2:261–266, 2005.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Caro, C. G., D. J. Doorly, and M. Tarnawski. Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R. Soc. Lond. A 452:185–197, 1996.Google Scholar
  9. 9.
    Caro, C. G., A. Seneviratne, K. B. Heraty, C. Monaco, M. G. Burke, R. Krams, C. C. Chang, P. Gilson, and G. Coppola. Intimal hyperplasia following implantation of helical-centreline and straight-centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow. J. R. Soc. Interface 11:20130578, 2014.Google Scholar
  10. 10.
    Chen, Z., F. Zhan, Y. Fan, and X. Deng. A novel way to reduce thrombus build-up in vena cava filters. Catheter. Cardiovasc. Interv. 78:792–798, 2011.PubMedGoogle Scholar
  11. 11.
    Chen, Z. S., Y. B. Fan, X. Y. Deng, and Z. P. Xu. Swirling flow can suppress flow disturbances in endovascular stents: a numerical study. ASAIO J. 55:543–549, 2009.PubMedGoogle Scholar
  12. 12.
    Chen, Z. S., X. W. Zhang, and X. Y. Deng. Swirling flow can suppress monocyte adhesion in the flow disturbance zones of the endovascular stent. Biorheology 49:341–352, 2012.PubMedGoogle Scholar
  13. 13.
    Chien, S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol. 83:131–151, 2003.PubMedGoogle Scholar
  14. 14.
    Chiu, C. J., J. Terzis, and M. L. MacRae. Replacement of superior vena cava with the spiral composite vein graft. A versatile technique. Ann. Thorac. Surg. 17:555–560, 1974.PubMedGoogle Scholar
  15. 15.
    Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.PubMedGoogle Scholar
  16. 16.
    Cookson, A. N., D. J. Doorly, and S. J. Sherwin. Mixing through stirring of steady flow in small amplitude helical tubes. Ann. Biomed. Eng. 37:710–721, 2009.PubMedGoogle Scholar
  17. 17.
    Coppola, G., and C. Caro. Oxygen mass transfer in a model three-dimensional artery. J. R. Soc. Interface 5:1067–1075, 2008.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Coppola, G., and C. Caro. Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance. J. R. Soc. Interface 6:519–528, 2009.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Deng, X., Y. Marois, T. How, Y. Merhi, M. King, R. Guidoin, and T. Karino. Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries. J. Vasc. Surg. 21:135–145, 1995.PubMedGoogle Scholar
  20. 20.
    Ding, Z., Y. Fan, X. Deng, F. Zhan, and H. Kang. Effect of swirling flow on the uptakes of native and oxidized LDLs in a straight segment of the rabbit thoracic aorta. Exp. Biol. Med. (Maywood) 235:506–513, 2010.Google Scholar
  21. 21.
    Doty, J. R., J. H. Flores, and D. B. Doty. Superior vena cava obstruction: bypass using spiral vein graft. Ann. Thorac. Surg. 67:1111–1116, 1999.PubMedGoogle Scholar
  22. 22.
    Duraiswamy, N., R. T. Schoephoerster, M. R. Moreno, and J. E. Moore. Stented artery flow patterns and their effects on the artery wall. Annu. Rev. Fluid Mech. 39:357–382, 2007.Google Scholar
  23. 23.
    Endo, S., Y. Sohara, and T. Karino. Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole. Heart Vessels 11:180–191, 1996.PubMedGoogle Scholar
  24. 24.
    Ethier, C. R. Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30:461–471, 2002.PubMedGoogle Scholar
  25. 25.
    Fan, Y. B., Z. P. Xu, W. T. Jiang, X. Y. Deng, K. Wang, and A. Q. Sun. An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor. J. Biomech. 41:2498–2505, 2008.PubMedGoogle Scholar
  26. 26.
    Frazin, L. J., G. Lanza, M. Vonesh, F. Khasho, C. Spitzzeri, S. McGee, D. Mehlman, K. B. Chandran, J. Talano, and D. McPherson. Functional chiral asymmetry in descending thoracic aorta. Circulation 82:1985–1994, 1990.PubMedGoogle Scholar
  27. 27.
    Frazin, L. J., M. J. Vonesh, K. B. Chandran, T. Shipkowitz, A. S. Yaacoub, and D. D. McPherson. Confirmation and initial documentation of thoracic and abdominal aortic helical flow. An ultrasound study. ASAIO J. 42:951–956, 1996.PubMedGoogle Scholar
  28. 28.
    Frydrychowicz, A., C. J. Francois, and P. A. Turski. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur. J. Radiol. 80:24–35, 2011.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Frydrychowicz, A., M. Markl, D. Hirtler, A. Harloff, C. Schlensak, J. Geiger, B. Stiller, and R. Arnold. Aortic hemodynamics in patients with and without repair of aortic coarctation in vivo analysis by 4D flow-sensitive magnetic resonance imaging. Invest. Radiol. 46:317–325, 2011.PubMedGoogle Scholar
  30. 30.
    Frydrychowicz, A., A. F. Stalder, M. F. Russe, J. Bock, S. Bauer, A. Harloff, A. Berger, M. Langer, J. Hennig, and M. Markl. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J. Magn. Reson. Imaging 30:77–84, 2009.PubMedGoogle Scholar
  31. 31.
    Frydrychowicz, A., J. T. Winterer, M. Zaitsev, B. Jung, J. Hennig, M. Langer, and M. Markl. Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3D phase contrast MRI at 3T. J. Magn. Reson. Imaging 25:1085–1092, 2007.PubMedGoogle Scholar
  32. 32.
    Gallo, D., G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M. A. Deriu, P. Segers, B. Verhegghe, G. Rizzo, and U. Morbiducci. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 40:729–741, 2012.PubMedGoogle Scholar
  33. 33.
    Gallo, D., D. A. Steinman, P. B. Bijari, and U. Morbiducci. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J. Biomech. 45:2398–2404, 2012.PubMedGoogle Scholar
  34. 34.
    Grigioni, M., C. Daniele, U. Morbiducci, C. Del Gaudio, G. D’Avenio, A. Balducci, and V. Barbaro. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J. Biomech. 38:1375–1386, 2005.PubMedGoogle Scholar
  35. 35.
    Gulan, U., B. Luthi, M. Holzner, A. Liberzon, A. Tsinober, and W. Kinzelbach. Experimental study of aortic flow in the ascending aorta via particle tracking velocimetry. Exp. Fluids 53:1469–1485, 2012.Google Scholar
  36. 36.
    Ha, H., and S. J. Lee. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model. Med. Eng. Phys. 36:119–128, 2014.PubMedGoogle Scholar
  37. 37.
    Hope, M., S. Wrenn, and P. Dyverfeldt. Clinical applications of aortic 4D flow imaging. Curr. Cardiovasc. Imaging Rep. 6:128–139, 2013.Google Scholar
  38. 38.
    Hope, M. D., T. A. Hope, S. E. Crook, K. G. Ordovas, T. H. Urbania, M. T. Alley, and C. B. Higgins. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc. Imaging 4:781–787, 2011.PubMedGoogle Scholar
  39. 39.
    Hope, M. D., T. A. Hope, A. K. Meadows, K. G. Ordovas, T. H. Urbania, M. T. Alley, and C. B. Higgins. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255:53–61, 2010.PubMedGoogle Scholar
  40. 40.
    Houston, J. G., S. J. Gandy, W. Milne, J. B. Dick, J. J. Belch, and P. A. Stonebridge. Spiral laminar flow in the abdominal aorta: a predictor of renal impairment deterioration in patients with renal artery stenosis? Nephrol. Dial. Transp. 19:1786–1791, 2004.Google Scholar
  41. 41.
    Houston, J. G., S. J. Gandy, D. G. Sheppard, J. B. Dick, J. J. Belch, and P. A. Stonebridge. Two-dimensional flow quantitative MRI of aortic arch blood flow patterns: effect of age, sex, and presence of carotid atheromatous disease on prevalence of spiral blood flow. J. Magn. Reson. Imaging 18:169–174, 2003.PubMedGoogle Scholar
  42. 42.
    Huijbregts, H. J., P. J. Blankestijn, C. G. Caro, N. J. Cheshire, M. T. Hoedt, and R. P. Tutein. Nolthenius, and F. L. Moll. A helical PTFE arteriovenous access graft to swirl flow across the distal anastomosis: results of a preliminary clinical study. Eur. J. Vasc. Endovasc. Surg. 33:472–475, 2007.PubMedGoogle Scholar
  43. 43.
    Jackson, S. P., W. S. Nesbitt, and E. Westein. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7(Suppl 1):17–20, 2009.PubMedGoogle Scholar
  44. 44.
    Jahrome, O. K., I. Hoefer, G. J. Houston, P. A. Stonebridge, P. J. Blankestijn, F. L. Moll, and G. J. de Borst. Hemodynamic effects of spiral ePTFE prosthesis compared with standard arteriovenous graft in a carotid to jugular vein porcine model. J. Vasc. Access 12:224–230, 2011.PubMedGoogle Scholar
  45. 45.
    Jin, S., J. Oshinski, and D. P. Giddens. Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125:347–354, 2003.PubMedGoogle Scholar
  46. 46.
    Kaazempur-Mofrad, M. R., and C. R. Ethier. Mass transport in an anatomically realistic human right coronary artery. Ann. Biomed. Eng. 29:121–127, 2001.PubMedGoogle Scholar
  47. 47.
    Karino, T., H. L. Goldsmith, M. Motomiya, S. Mabuchi, and Y. Sohara. Flow patterns in vessels of simple and complex geometries. Ann. N. Y. Acad. Sci. 516:422–441, 1987.PubMedGoogle Scholar
  48. 48.
    Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.PubMedGoogle Scholar
  49. 49.
    Knobloch, V., C. Binter, U. Gulan, A. Sigfridsson, M. Holzner, B. Luthi, and S. Kozerke. Mapping mean and fluctuating velocities by Bayesian multipoint MR velocity encoding-validation against 3D particle tracking velocimetry. Magn. Reson. Med. 71:1405–1415, 2014.PubMedGoogle Scholar
  50. 50.
    Koskinas, K. C., Y. S. Chatzizisis, A. P. Antoniadis, and G. D. Giannoglou. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol. 59:1337–1349, 2012.PubMedGoogle Scholar
  51. 51.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.PubMedGoogle Scholar
  52. 52.
    Lee, K. E., J. S. Lee, and J. Y. Yoo. A numerical study on steady flow in helically sinuous vascular prostheses. Med. Eng. Phys. 33:38–46, 2011.PubMedGoogle Scholar
  53. 53.
    Liu, X., Y. Fan, and X. Deng. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 38:917–926, 2010.PubMedGoogle Scholar
  54. 54.
    Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44:1123–1131, 2011.PubMedGoogle Scholar
  55. 55.
    Liu, X., Y. Fan, A. Sun, and X. Deng. Numerical simulation of nucleotide transport in the human thoracic aorta. J. Biomech. 46:819–827, 2013.PubMedGoogle Scholar
  56. 56.
    Liu, X., Y. Fan, X. Y. Xu, and X. Deng. Nitric oxide transport in an axisymmetric stenosis. J. R. Soc. Interface 9:2468–2478, 2012.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Liu, X., F. Pu, Y. Fan, X. Deng, D. Li, and S. Li. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297:H163–H170, 2009.PubMedGoogle Scholar
  58. 58.
    Losi, P., S. Lombardi, E. Briganti, and G. Soldani. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts. Biomaterials 25:4447–4455, 2004.PubMedGoogle Scholar
  59. 59.
    Loth, F., P. F. Fischer, and H. S. Bassiouny. Blood flow in end-to-side anastomoses. Annu. Rev. Fluid Mech. 40:367–393, 2008.Google Scholar
  60. 60.
    Lurie, F., and R. L. Kistner. On the existence of helical flow in veins of the lower extremities. J. Vasc. Surg.: Venous Lymphat. Disord. 1:134–138, 2013.Google Scholar
  61. 61.
    Mahadevia, R., A. J. Barker, S. Schnell, P. Entezari, P. Kansal, P. W. Fedak, S. C. Malaisrie, P. McCarthy, J. Collins, J. Carr, and M. Markl. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129:673–682, 2014.PubMedGoogle Scholar
  62. 62.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.PubMedGoogle Scholar
  63. 63.
    Markl, M., M. T. Draney, M. D. Hope, J. M. Levin, F. P. Chan, M. T. Alley, N. J. Pelc, and R. J. Herfkens. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J. Comput. Assist. Tomogr. 28:459–468, 2004.PubMedGoogle Scholar
  64. 64.
    Markl, M., M. T. Draney, D. C. Miller, J. M. Levin, E. E. Williamson, N. J. Pelc, D. H. Liang, and R. J. Herfkens. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 130:456–463, 2005.PubMedGoogle Scholar
  65. 65.
    Markl, M., A. Frydrychowicz, S. Kozerke, M. Hope, and O. Wieben. 4D flow MRI. J. Magn. Reson. Imaging 36:1015–1036, 2012.PubMedGoogle Scholar
  66. 66.
    Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7, 2011.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Meierhofer, C., E. P. Schneider, C. Lyko, A. Hutter, S. Martinoff, M. Markl, A. Hager, J. Hess, H. Stern, and S. Fratz. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur. Heart J. Cardiovasc. Imaging 14:797–804, 2013.PubMedGoogle Scholar
  68. 68.
    Morbiducci, U., D. Gallo, D. Massai, F. Consolo, R. Ponzini, L. Antiga, C. Bignardi, M. A. Deriu, and A. Redaelli. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. J. Biomech. Eng. 132:091005, 2010.PubMedGoogle Scholar
  69. 69.
    Morbiducci, U., D. Gallo, R. Ponzini, D. Massai, L. Antiga, F. M. Montevecchi, and A. Redaelli. Quantitative analysis of bulk flow in image-based hemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case. Ann. Biomed. Eng. 38:3688–3705, 2010.PubMedGoogle Scholar
  70. 70.
    Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.PubMedGoogle Scholar
  71. 71.
    Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass: a numeric study. J. Biomech. 40:519–534, 2007.PubMedGoogle Scholar
  72. 72.
    Morbiducci, U., R. Ponzini, G. Rizzo, M. E. Biancolini, F. Iannaccone, D. Gallo, and A. Redaelli. Synthetic dataset generation for the analysis and the evaluation of image-based hemodynamics of the human aorta. Med. Biol. Eng. Comput. 50:145–154, 2012.PubMedGoogle Scholar
  73. 73.
    Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37:516–531, 2009.PubMedGoogle Scholar
  74. 74.
    Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10:339–355, 2011.PubMedGoogle Scholar
  75. 75.
    Naphon, P., and S. Wongwises. A review of flow and heat transfer characteristics in curved tubes. Renew. Sustain. Energy Rev. 10:463–490, 2006.Google Scholar
  76. 76.
    Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.PubMedGoogle Scholar
  77. 77.
    Papaharilaou, Y., D. J. Doorly, and S. J. Sherwin. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J. Biomech. 35:1225–1239, 2002.PubMedGoogle Scholar
  78. 78.
    Paul, M. C., and A. Larman. Investigation of spiral blood flow in a model of arterial stenosis. Med. Eng. Phys. 31:1195–1203, 2009.PubMedGoogle Scholar
  79. 79.
    Sauvage, L. R., M. W. Walker, K. Berger, S. B. Robel, M. M. Lischko, S. G. Yates, and G. A. Logan. Current arterial prostheses. Experimental evaluation by implantation in the carotid and circumflex coronary arteries of the dog. Arch. Surg. 114:687–691, 1979.PubMedGoogle Scholar
  80. 80.
    Scanlon, V. C., and T. Sanders. Essentials of Anatomy and Physiology, 5th edition. Philadelphia: F. A. Davis Company, 2007, pp. 297–297.Google Scholar
  81. 81.
    Seed, W. A., and N. B. Wood. Velocity patterns in the aorta. Cardiovasc. Res. 5:319–330, 1971.PubMedGoogle Scholar
  82. 82.
    Segadal, L., and K. Matre. Blood velocity distribution in the human ascending aorta. Circulation 76:90–100, 1987.PubMedGoogle Scholar
  83. 83.
    Sherwin, S. J., O. Shah, D. J. Doorly, J. Peiro, Y. Papaharilaou, N. Watkins, C. G. Caro, and C. L. Dumoulin. The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis. J. Biomech. Eng.-T ASME 122:86–95, 2000.Google Scholar
  84. 84.
    Stankovic, Z., B. D. Allen, J. Garcia, K. B. Jarvis, and M. Markl. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 4:173–192, 2014.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Stary, H. C., A. B. Chandler, S. Glagov, J. R. Guyton, W. Insull, Jr., M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478, 1994.PubMedGoogle Scholar
  86. 86.
    Stonebridge, P. A., and C. M. Brophy. Spiral laminar flow in arteries? Lancet 338:1360–1361, 1991.PubMedGoogle Scholar
  87. 87.
    Stonebridge, P. A., P. R. Hoskins, P. L. Allan, and J. F. Belch. Spiral laminar flow in vivo. Clin. Sci. (Lond). 91:17–21, 1996.PubMedGoogle Scholar
  88. 88.
    Stonebridge, P. A., F. Vermassen, J. Dick, J. J. Belch, and G. Houston. Spiral laminar flow prosthetic bypass graft: medium-term results from a first-in-man structured registry study. Ann. Vasc. Surg. 26:1093–1099, 2012.PubMedGoogle Scholar
  89. 89.
    Sun, A., Y. Fan, and X. Deng. Numerical investigation of blood flow in the distal end of an axis-deviated arterial bypass model. Biorheology. 46:83–92, 2009.PubMedGoogle Scholar
  90. 90.
    Sun, A. Q., Y. B. Fan, and X. Y. Deng. Numerical comparative study on the hemodynamic performance of a new helical graft with noncircular cross section and SwirlGraft. Artif. Organs. 34:22–27, 2010.PubMedGoogle Scholar
  91. 91.
    Sun, A. Q., Y. B. Fan, and X. Y. Deng. Intentionally induced swirling flow may improve the hemodynamic performance of coronary bifurcation stenting. Catheter. Cardiovasc. Interv. 79:371–377, 2012.PubMedGoogle Scholar
  92. 92.
    Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118, 2003.PubMedGoogle Scholar
  93. 93.
    Uchida, Y., T. Tomaru, F. Nakamura, A. Furuse, Y. Fujimori, and K. Hasegawa. Percutaneous coronary angioscopy in patients with ischemic heart disease. Am. Heart J. 114:1216–1222, 1987.PubMedGoogle Scholar
  94. 94.
    Van Canneyt, K., U. Morbiducci, S. Eloot, G. De Santis, P. Segers, and P. Verdonck. A computational exploration of helical arterio-venous graft designs. J. Biomech. 46:345–353, 2013.PubMedGoogle Scholar
  95. 95.
    Van Langenhove, G., J. J. Wentzel, R. Krams, C. J. Slager, J. N. Hamburger, and P. W. Serruys. Helical velocity patterns in a human coronary artery: a three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation 102:E22–E24, 2000.PubMedGoogle Scholar
  96. 96.
    Wen, J., T. H. Zheng, W. T. Jiang, X. Y. Deng, and Y. B. Fan. A comparative study of helical-type and traditional-type artery nypass grafts: numerical simulation. ASAIO J. 57:399–406, 2011.PubMedGoogle Scholar
  97. 97.
    Wetzel, S., S. Meckel, A. Frydrychowicz, L. Bonati, E. W. Radue, K. Scheffler, J. Hennig, and M. Markl. In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. AJNR Am. J. Neuroradiol. 28:433–438, 2007.PubMedGoogle Scholar
  98. 98.
    Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329, 1999.PubMedGoogle Scholar
  99. 99.
    Yamamoto, K., A. Aribowo, Y. Hayamizu, T. Hirose, and K. Kawahara. Visualization of the flow in a helical pipe. Fluid Dyn. Res. 30:251–267, 2002.Google Scholar
  100. 100.
    Yashiro, K., H. Shiratori, and H. Hamada. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450:285–288, 2007.PubMedGoogle Scholar
  101. 101.
    Zabielski, L., and A. J. Mestel. Steady flow in a helically symmetric pipe. J. Fluid Mech. 370:297–320, 1998.Google Scholar
  102. 102.
    Zabielski, L., and A. J. Mestel. Unsteady blood flow in a helically symmetric pipe. J. Fluid Mech. 370:321–345, 1998.Google Scholar
  103. 103.
    Zabielski, L., and A. J. Mestel. Helical flow around arterial bends for varying body mass. J. Biomech. Eng. 122:135–142, 2000.PubMedGoogle Scholar
  104. 104.
    Zhan, F., Y. Fan, and X. Deng. Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: its implication in the design of small-caliber arterial grafts. Thromb. Res. 125:413–418, 2010.PubMedGoogle Scholar
  105. 105.
    Zhan, F., Y. B. Fan, and X. Y. Deng. Effect of swirling flow on platelet concentration distribution in small-caliber artificial grafts and end-to-end anastomoses. Acta Mech Sinica. 27:833–839, 2011.Google Scholar
  106. 106.
    Zhan, F., Y. B. Fan, X. Y. Deng, and Z. P. Xu. The beneficial effect of swirling flow on platelet adhesion to the surface of a sudden tubular expansion tube: its potential application in end-to-end arterial anastomosis. ASAIO J. 56:172–179, 2010.PubMedGoogle Scholar
  107. 107.
    Zhang, Z., Y. Fan, X. Deng, G. Wang, H. Zhang, and R. Guidoin. Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider. Sci. China C Life Sci. 51:913–921, 2008.PubMedGoogle Scholar
  108. 108.
    Zheng, T., J. Wen, W. Jiang, X. Deng, and Y. Fan. Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft. Comput. Methods Biomech. Biomed. Eng. 17:549–559, 2014.Google Scholar
  109. 109.
    Zheng, T. H., Y. B. Fan, Y. Xiong, W. T. Jiang, and X. Y. Deng. Hemodynamic performance study on small diameter helical grafts. ASAIO J. 55:192–199, 2009.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  1. 1.Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina

Personalised recommendations