Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2501–2511 | Cite as

An Experimental and Numerical Investigation of Head Dynamics Due to Stick Impacts in Girls’ Lacrosse

  • Justin D. Morse
  • Jennifer A. Franck
  • Bethany J. Wilcox
  • Joseph J. Crisco
  • Christian Franck
Article

Abstract

A method of investigating head acceleration and intracranial dynamics from stick impacts in girls’ and women’s lacrosse was developed using headform impact experiments and a finite element head model. Assessing the likelihood of head injury due to stick-head impacts is of interest in girls’ and women’s lacrosse due to the current lack of head protection during play. Experimental and simulation data were compared to characterize the head acceleration caused by stick-head impacts. Validation against cadaver head impact experiments ensures that the finite element model, with its relatively simple material properties, can provide means to develop a better understanding of the intracranial dynamics during lacrosse stick impacts. Our numerical results showed the peak acceleration at the center of gravity increased linearly with impact force, and was generally in agreement with the experimental data. von Mises stresses and peak principal strains, two common literature injury indicators, were examined within the finite element model, and peak values were below the previously reported thresholds for mild traumatic brain injury. By reconstructing typical in-game, unprotected stick-head impacts, this investigation lays the foundation for a quantitative methodology of injury prediction in girls’ and womens’ lacrosse.

Keywords

Finite element model Sports-related concussion Intracranial dynamics Head acceleration Maximum principal strain von Mises stress 

References

  1. 1.
    Beckwith, J. G., R. M. Greenwald, and J. J. Chu. Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform. Ann. Biomed. Eng. 40:237–248, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bower, A. F. Applied Mechanics of Solids. Boca Raton: CRC Press, p. 820, 2010.Google Scholar
  3. 3.
    Chafi, M. S., G. Karami, and M. Ziejewski. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann. Biomed. Eng. 38:490–504, 2010.PubMedCrossRefGoogle Scholar
  4. 4.
    Chatelin, S., C. Deck, F. Renard, S. Kremer, C. Heinrich, J.-P. Armspach, and R. Willinger. Computation of axonal elongation in head trauma finite element simulation. J. Mech. Behav. Biomed. Mater. 4:1905–1919, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Claessens, M., F. Sauren, and J. Wismans. Modeling of the human head under impact conditions: a parametric study. SAE Technical Paper 973338, 1997.Google Scholar
  6. 6.
    Cormier, J., S. Manoogian, J. Bisplinghoff, S. Rowson, A. Santago, C. McNally, S. Duma, and J. Bolte IV. The tolerance of the frontal bone to blunt impact. J. Biomech. Eng. 133:021004, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Crisco, J. J., R. Fiore, J. G. Beckwith, J. J. Chu, P. G. Brolinson, S. Duma, T. W. McAllister, A.-C. Duhaime, and R. M. Greenwald. Frequency and location of head impact exposures in individual collegiate football players. J. Athl. Train. 45:549–559, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Deck, C., and R. Willinger. Improved head injury criteria based on head FE model. Int. J. Crashworthiness 13:667–678, 2008.CrossRefGoogle Scholar
  9. 9.
    Dillon, P., and R. Seewald. 2014 and 2015 NCAA Women’s Lacrosse Rules and Interpretations. National Collegiate Athletic Association, 2013.Google Scholar
  10. 10.
    Elkin, B. S., and B. Morrison. Region-specific tolerance criteria for the living brain. Stapp Car Crash J. 51:127–138, 2007.PubMedGoogle Scholar
  11. 11.
    Horgan, T. J., and M. D. Gilchrist. Influence of FE model variability in predicting brain motion and intracranial pressure changes in head impact simulations. Int. J. Crashworthiness 9:401–418, 2004.CrossRefGoogle Scholar
  12. 12.
    Irick, E. 1981-82 - 2012-13 NCAA Sports Sponsorship and Participation Rates Report. National Collegiate Athletic Association, 2013.Google Scholar
  13. 13.
    Ji, S., H. Ghadyani, R. P. Bolander, J. G. Beckwith, J. C. Ford, T. W. McAllister, L. A. Flashman, K. D. Paulsen, K. Ernstrom, S. Jain, R. Raman, L. Zhang, and R. M. Greenwald. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann. Biomed. Eng. 42(1):11–24, 2013.CrossRefGoogle Scholar
  14. 14.
    Karlin, A. M. Concussion in the pediatric and adolescent population: “different population, different concerns”. PM&R 3:S369–S379, 2011.CrossRefGoogle Scholar
  15. 15.
    Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.PubMedGoogle Scholar
  16. 16.
    Kleiven, S., and H. von Holst. Consequences of head size following trauma to the human head. J. Biomech. 35:153–160, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Kraft, R. H., P. J. McKee, A. M. Dagro, and S. T. Grafton. Combining the finite element method with structural connectome-based analysis for modeling neurotrauma: connectome neurotrauma mechanics. PLoS Comput. Biol. 8:e1002619, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Langlois, J. A., W. Rutland-Brown, and M. M. Wald. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21:375–378, 2006.PubMedCrossRefGoogle Scholar
  19. 19.
    Lincoln, A. E., R. Y. Hinton, J. L. Almquist, S. L. Lager, and R. W. Dick. Head, face, and eye injuries in scholastic and collegiate lacrosse a 4-year prospective study. Am. J. Sports Med. 35:207–215, 2007.PubMedCrossRefGoogle Scholar
  20. 20.
    Littlefield, D. L., and S. Kulathu. Simulation of human head response to impact loading using newly developed biofidelic material models for brain tissue. Stapp Car Crash J. 55:75–89, 2011.PubMedGoogle Scholar
  21. 21.
    Mao, H., X. Jin, L. Zhang, K. H. Yang, T. Igarashi, L. J. Noble-Haeusslein, and A. I. King. Finite element analysis of controlled cortical impact-induced cell loss. J. Neurotrauma 27:877–888, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Mao, H., L. Zhang, B. Jiang, V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, A. Singh, and K. H. Yang. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135:111002, 2013.PubMedCrossRefGoogle Scholar
  23. 23.
    McAllister, T. W., J. C. Ford, S. Ji, J. G. Beckwith, L. A. Flashman, K. Paulsen, and R. M. Greenwald. Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann. Biomed. Eng. 40:127–140, 2012.PubMedCrossRefGoogle Scholar
  24. 24.
    McCrory, P., W. Meeuwisse, K. Johnston, J. Dvorak, M. Aubry, M. Molloy, and R. Cantu. Consensus statement on concussion in sport: the 3rd international conference on concussion in sport held in Zurich, November 2008. Br. J. Sports Med. 43:i76–i84, 2009.PubMedCrossRefGoogle Scholar
  25. 25.
    Meaney, D. F., B. Morrison, and C. Dale Bass. The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J. Biomech. Eng. 136:021008-1–021008-14, 2014.CrossRefGoogle Scholar
  26. 26.
    Mihalik, J. P., K. M. Guskiewicz, S. W. Marshall, J. T. Blackburn, R. C. Cantu, and R. M. Greenwald. Head impact biomechanics in youth hockey: comparisons across playing position, event types, and impact locations. Ann. Biomed. Eng. 40:141–149, 2012.PubMedCrossRefGoogle Scholar
  27. 27.
    Miller, R. T., S. S. Margulies, M. Leoni, M. Nonaka, X. Chen, D. H. Smith, and D. F. Meaney. Finite element modeling approaches for predicting injury in an experimental model of severe diffuse axonal injury. SAE Technical Paper 983154, 1998.Google Scholar
  28. 28.
    Moore, D. F., A. Jerusalem, M. Nyein, L. Noels, M. S. Jaffee, and R. A. Radovitzky. Computational biology—modeling of primary blast effects on the central nervous system. Neuroimage 47(Suppl 2):T10–T20, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Nahum, A. M., R. Smith, and C. C. Ward. Intracranial pressure dynamics during head impact. Proceedings of the 21st Stapp Car Crash Conference, SAE Paper No. 770922. Society of Automotive Engineers, Warrendale, PA. 1977.Google Scholar
  30. 30.
    Naunheim, R. S., J. Standeven, C. Richter, and L. M. Lewis. Comparison of impact data in hockey, football, and soccer. J. Trauma 48:938–941, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Nyein, M. K., A. M. Jason, L. Yu, C. M. Pita, J. D. Joannopoulos, D. F. Moore, and R. A. Radovitzky. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc. Natl. Acad. Sci. USA 107:20703–20708, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Pellman, E. J., D. C. Viano, A. M. Tucker, I. R. Casson, and J. F. Waeckerle. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53:799–812; discussion 812–814, 2003.Google Scholar
  33. 33.
    Raul, J.-S., D. Baumgartner, R. Willinger, and B. Ludes. Finite element modelling of human head injuries caused by a fall. Int. J. Leg. Med. 120:212–218, 2006.CrossRefGoogle Scholar
  34. 34.
    Roth, S., J.-S. Raul, B. Ludes, and R. Willinger. Finite element analysis of impact and shaking inflicted to a child. Int. J. Leg. Med. 121:223–228, 2007.CrossRefGoogle Scholar
  35. 35.
    Rowson, S., G. Brolinson, M. Goforth, D. Dietter, and S. Duma. Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131:061016, 2009.PubMedCrossRefGoogle Scholar
  36. 36.
    Ruan, J. S., T. Khalil, and A. I. King. Dynamic response of the human head to impact by three-dimensional finite element analysis. J. Biomech. Eng. 116:44–50, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Takhounts, E. G., R. H. Eppinger, J. Q. Campbell, R. E. Tannous, E. D. Power, and L. S. Shook. On the development of the SIMon finite element head model. Stapp Car Crash J. 47:107–133, 2003.PubMedGoogle Scholar
  38. 38.
    Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.PubMedGoogle Scholar
  39. 39.
    Willinger, R., H. S. Kang, and B. Diaw. Three-dimensional human head finite-element model validation against two experimental impacts. Ann. Biomed. Eng. 27:403–410, 1999.PubMedCrossRefGoogle Scholar
  40. 40.
    Willinger, R., L. Taleb, and C. M. Kopp. Modal and temporal analysis of head mathematical models. J. Neurotrauma 12:743–754, 1995.PubMedCrossRefGoogle Scholar
  41. 41.
    Wright, R. M., A. Post, B. Hoshizaki, and K. T. Ramesh. A multiscale computational approach to estimating axonal damage under inertial loading of the head. J. Neurotrauma 30:102–118, 2013.PubMedCrossRefGoogle Scholar
  42. 42.
    Yao, J., J. Yang, and D. Otte. Investigation of head injuries by reconstructions of real-world vehicle-vs.-adult-pedestrian accidents. Saf. Sci. 46:1103–1114, 2008.CrossRefGoogle Scholar
  43. 43.
    Young, P. G., T. B. H. Beresford-West, S. R. L. Coward, B. Notarberardino, B. Walker, and A. Abdul-Aziz. An efficient approach to converting three-dimensional image data into highly accurate computational models. Philos. Trans. R. Soc. A 366:3155–3173, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Justin D. Morse
    • 1
  • Jennifer A. Franck
    • 2
  • Bethany J. Wilcox
    • 1
  • Joseph J. Crisco
    • 1
    • 3
  • Christian Franck
    • 1
    • 2
  1. 1.Center for Biomedical EngineeringBrown UniversityProvidenceUSA
  2. 2.School of EngineeringBrown UniversityProvidenceUSA
  3. 3.Department of OrthopaedicsWarren Alpert Medical School of Brown University and Rhode Island HospitalProvidenceUSA

Personalised recommendations