Annals of Biomedical Engineering

, Volume 42, Issue 11, pp 2360–2368 | Cite as

EEG Feature Pre-processing for Neonatal Epileptic Seizure Detection

  • J. G. Bogaarts
  • E. D. Gommer
  • D. M. W. Hilkman
  • V. H. J. M. van Kranen-Mastenbroek
  • J. P. H. Reulen
Article

Abstract

Aim of our project is to further optimize neonatal seizure detection using support vector machine (SVM). First, a Kalman filter (KF) was used to filter both feature and classifier output time series in order to increase temporal precision. Second, EEG baseline feature correction (FBC) was introduced to reduce inter patient variability in feature distributions. The performance of the detection methods is evaluated on 54 multi channel routine EEG recordings from 39 both term and pre-term newborns. The area under the receiver operating characteristics curve (AUC) as well as sensitivity and specificity are used to evaluate the performance of the classification method. SVM without KF and FBC achieves an AUC of 0.767 (sensitivity 0.679, specificity 0.707). The highest AUC of 0.902 (sensitivity 0.801, specificity 0.831) is achieved on baseline corrected features with a Kalman smoother used for training data pre-processing and a KF used to filter the classifier output. Both FBC and KF significantly improve neonatal epileptic seizure detection. This paper introduces significant improvements for the state of the art SVM based neonatal epileptic seizure detection.

Keywords

Neonatal EEG Epilepsy Detection Feature Baseline SVM Kalman filter 

References

  1. 1.
    Aarabi, A., F. Wallois, and R. Grebe. Automated neonatal seizure detection: a multistage classification system through feature selection based on relevance and redundancy analysis. Clin. Neurophysiol. 117:328–340, 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Aarabi, A., R. Grebe, and F. Wallois. A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin. Neurophysiol. 118:2781–2797, 2007.PubMedCrossRefGoogle Scholar
  3. 3.
    Bar-Shalom, Y., T. Kirubarajan, and X.-R. Li. Estimation with Applications to Tracking and Navigation. New York: Wiley, 2002.Google Scholar
  4. 4.
    Chisci, L., A. Mavino, G. Perferi, M. Sciandrone, C. Anile, G. Colicchio, and F. Fuggetta. Real-time epileptic seizure prediction using AR models and support vector machines. IEEE Trans. Biomed. Eng. 57:1124–1132, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    De Weerd, A. W., P. A. Despland, P. Plouin, and Neonatal EEG. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. 52:149–157, 1999.Google Scholar
  6. 6.
    Deburchgraeve, W., P. J. Cherian, M. De Vos, R. M. Swarte, J. H. Blok, G. H. Visser, P. Govaert, and S. Van Huffel. Automated neonatal seizure detection mimicking a human observer reading EEG. Clin. Neurophysiol. 119:2447–2454, 2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Gotman, J., D. Flanagan, J. Zhang, and B. Rosenblatt. Automatic seizure detection in the newborn: methods and initial evaluation. Electroencephalogr. Clin. Neurophysiol. 103:356–362, 1997.PubMedCrossRefGoogle Scholar
  8. 8.
    Greene, B. R., S. Faul, W. P. Marnane, G. Lightbody, I. Korotchikova, and G. B. Boylan. A comparison of quantitative EEG features for neonatal seizure detection. Clin. Neurophysiol. 119:1248–1261, 2008.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanley, J. A., and B. J. McNeil. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843, 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    MATLAB version 7.14.0. Natick. Massachusetts: The MathWorks Inc., 2012.Google Scholar
  11. 11.
    Navakatikyan, M. A., P. B. Colditz, C. J. Burke, T. E. Inder, J. Richmond, and C. E. Williams. Seizure detection algorithm for neonates based on wave-sequence analysis. Clin. Neurophysiol. 117:1190–1203, 2006.PubMedCrossRefGoogle Scholar
  12. 12.
    Pachori, R. B., and V. Bajaj. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput. Methods Programs Biomed. 104:373–381, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Rauch, H. E., F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic systems. AIAA J. 3:1445–1450, 1965.CrossRefGoogle Scholar
  14. 14.
    Scher, M. S., M. Y. Hamid, D. A. Steppe, M. E. Beggarly, and M. J. Painter. Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia 34:284–288, 1993.PubMedCrossRefGoogle Scholar
  15. 15.
    Scher, M. S., D. A. Steppe, R. J. Sclabassi, and D. L. Banks. Regional differences in spectral EEG measures between healthy term and preterm infants. Pediatr. Neurol. 17:218–223, 1997.PubMedCrossRefGoogle Scholar
  16. 16.
    Scholkopf, B. S. A. Learning with Kernels. Cambridge: MIT press, 2002.Google Scholar
  17. 17.
    Temko, A., C. Nadeu, W. Marnane, G. B. Boylan, and G. Lightbody. EEG signal description with spectral-envelope-based speech recognition features for detection of neonatal seizures. IEEE Trans. Inf. Technol. Biomed. 15:839–847, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Temko, A., E. Thomas, W. Marnane, G. Lightbody, and G. Boylan. EEG-based neonatal seizure detection with support vector machines. Clin. Neurophysiol. 122:464–473, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Temko, A., E. Thomas, W. Marnane, G. Lightbody, and G. B. Boylan. Performance assessment for EEG-based neonatal seizure detectors. Clin. Neurophysiol. 122:474–482, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tharp, B. R. Electrophysiological brain maturation in premature infants: an historical perspective. J. Clin. Neurophysiol. 7:302–314, 1990.PubMedCrossRefGoogle Scholar
  21. 21.
    Vapnik, V. Estimation of dependences based on empirical data: Springer series in statistics (Springer Series in Statistics). New Yok: Springer, 1982.Google Scholar
  22. 22.
    Wirrell, E. C., E. A. Armstrong, L. D. Osman, and J. Y. Yager. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr. Res. 50:445–454, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • J. G. Bogaarts
    • 1
  • E. D. Gommer
    • 1
  • D. M. W. Hilkman
    • 1
  • V. H. J. M. van Kranen-Mastenbroek
    • 1
  • J. P. H. Reulen
    • 1
  1. 1.Department of Clinical NeurophysiologyAZM MaastrichtMaastrichtThe Netherlands

Personalised recommendations