Annals of Biomedical Engineering

, Volume 43, Issue 1, pp 207–221 | Cite as

Modeling of the Acute Effects of Primary Hypertension and Hypotension on the Hemodynamics of Intracranial Aneurysms

  • Ali Sarrami-Foroushani
  • Maria-Cruz Villa-Uriol
  • Mohsen Nasr Esfahany
  • Stuart C. Coley
  • Luigi Yuri Di Marco
  • Alejandro F. Frangi
  • Alberto Marzo
Article

Abstract

Hemodynamics is a risk factor in intracranial aneurysms (IA). Hypertension and pharmacologically induced hypotension are common in IA patients. This study investigates how hypertension and hypotension may influence aneurysmal hemodynamics. Images of 23 IAs at typical locations were used to build patient-specific Computational Fluid Dynamics models. The effects of hypotension and hypertension were simulated through boundary conditions by modulating the normotensive flow and pressure waveforms, in turn produced by a 1D systemic vascular model. Aneurysm location and flow pattern types were used to categorize the influence of hypotension and hypertension on relevant flow variables (velocity, pressure and wall shear stress). Results indicate that, compared to other locations, vertebrobasilar aneurysms (VBA) are more sensitive to flow changes. In VBAs, space-averaged velocity at peak systole increased by 30% in hypertension (16–21% in other locations). Flow in VBAs in hypotension decreased by 20% (10–13% in other locations). Momentum-driven hemodynamic types were also more affected by hypotension and hypertension, than shear-driven types. This study shows how patient-specific modeling can be effectively used to identify location-specific flow patterns in a clinically-relevant study, thus reinforcing the role played by modeling technologies in furthering our understanding of cardiovascular disease, and their potential in future healthcare.

Keywords

Boundary conditions 1D circulation model Blood pressure Wall shear stress Virtual physiological human Cerebral vasculature Simulation Computational fluid dynamics 

Abbreviations

IA

Intracranial aneurysm

CFD

Computational fluid dynamics

3DRA

Three-dimensional rotational angiography

ICA

Internal carotid artery

MCA

Middle cerebral artery

PCOM

Posterior communicating artery

VBA

Vertebrobasilar artery

SBP

Systolic blood pressure

DBP

Diastolic blood pressure

MD

Momentum-driven

SD

Shear-driven

MV

Maximum velocity at peak systole

SavV

Space-averaged velocity at peak systole

MTavV

Maximum time-averaged velocity

TavV

Time-averaged velocity

STavV

Space-and-time-averaged velocity

WSS

Wall shear stress

TavWSS

Time-averaged wall shear stress

STavWSS

Space-and-time-averaged wall shear stress

Notes

Acknowledgments

The research leading to these results has received funding from the European Union’s Sixth (FP6/2002-2006) and Seventh Framework Programme (FP7/2007–2013) under grant agreements  no. FP6-IST- 027703 (@neurIST), no. FP7-ICT-601055 (VPH-DARE@IT), and no. FP7-ICT-69978 (VPH-Share). The authors would also like to acknowledge the computational support provided by the Department of Chemical Engineering, Isfahan University of Technology (IUT).

References

  1. 1.
    Bijlenga, P., and @neurIST investigators. Risk of rupture of small anterior communicating artery aneurysms is similar to posterior circulation aneurysms. Stroke 44:3018–3026, 2013.PubMedCrossRefGoogle Scholar
  2. 2.
    Bonert, M., J. G. Myers, S. Fremes, J. Williams, and C. R. Ethier. A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses. Ann. Biomed. Eng. 30:599–611, 2002.PubMedCrossRefGoogle Scholar
  3. 3.
    Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bowker, T. J., P. N. Watton, P. E. Summers, J. V. Byrne, and Y. Ventikos. Rest versus exercise hemodynamics for middle cerebral artery aneurysms: a computational study. AJNR Am. J. Neuroradiol. 31:317–323, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Cebral, J. R., and H. Meng. Counterpoint: realizing the clinical utility of computational fluid dynamics—closing the gap. AJNR. Am. J. Neuroradiol. 33:396–398, 2012.PubMedCrossRefGoogle Scholar
  6. 6.
    Cebral, J. R., F. Mut, J. Weir, and C. Putman. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am. J. Neuroradiol. 32:145–151, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 32:264–270, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Dempere-Marco, L., E. Oubel, M. Castro, C. Putman, A. Frangi, and J. Cebral. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. Med. Image Comput. Comput. Assist. Interv. 9:438–445, 2006.PubMedGoogle Scholar
  9. 9.
    Ghods, A. J., D. Lopes, and M. Chen. Gender differences in cerebral aneurysm location. Front. Neurol. 3:78, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Humphrey, J., and S. Na. Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30:509–523, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Jou, L.-D., D. H. Lee, H. Morsi, and M. E. Mawad. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am. J. Neuroradiol. 29:1761–1767, 2008.PubMedCrossRefGoogle Scholar
  13. 13.
    Lam, A. M., and A. W. Gelb. Cardiovascular effects of isoflurane-induced hypotension for cerebral aneurysm surgery. Anesth. Analg. 62:742–748, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38:1288–1313, 2010.PubMedCrossRefGoogle Scholar
  15. 15.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.PubMedCrossRefGoogle Scholar
  16. 16.
    Meng, H., V. M. Tutino, J. Xiang, and A. Siddiqui. High WSS or Low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am. J. Neuroradiol. 35:1254–1262, 2014.Google Scholar
  17. 17.
    Mitchell, P., A. Gholkar, R. R. Vindlacheruvu, and A. David Mendelow. Unruptured intracranial aneurysms: benign curiosity or ticking bomb? Lancet Neurol. 3:85–92, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Nixon, A. M., M. Gunel, and B. E. Sumpio. The critical role of hemodynamics in the development of cerebral vascular disease: a review. J. Neurosurg. 112:1240–1253, 2010.PubMedCrossRefGoogle Scholar
  19. 19.
    Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:H208–H222, 2009.PubMedCrossRefGoogle Scholar
  20. 20.
    Rinkel, G. J. E., M. Djibuti, M. Djibuti, A. Algra, and J. van Gijn. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256, 1998.PubMedCrossRefGoogle Scholar
  21. 21.
    Sforza, D. M., C. M. Putman, and J. R. Cebral. Hemodynamics of cerebral aneurysms. Annu. Rev. Fluid Mech. 41:91–107, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505, 2004.PubMedCrossRefGoogle Scholar
  23. 23.
    Singh, P. K., A. Marzo, B. Howard, D. A. Rufenacht, P. Bijlenga, A. F. Frangi, P. V. Lawford, D. R. Hose, and U. J. Patel. Effects of smoking and hypertension on wall shear stress and oscillatory shear index at the site of intracranial aneurysm formation. Clin. Neurol. Neurosurg. 112:306–313, 2010.PubMedCrossRefGoogle Scholar
  24. 24.
    Slosberg, P. S. Symptomatic unruptured giant aneurysms: medical treatment. Acta Neurochir. (Wien) 62:207–218, 1982.CrossRefGoogle Scholar
  25. 25.
    Slosberg, P. S. Unexpected results in long-term medically treated ruptured intracranial aneurysm including data on 14 patients followed more than 30 years each. Acta Neurochir. (Wien) 139:697–705, 1997.CrossRefGoogle Scholar
  26. 26.
    Suh, G.-Y., A. S. Les, A. S. Tenforde, S. C. Shadden, R. L. Spilker, J. J. Yeung, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Hemodynamic changes quantified in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Eng. 39:2186–2202, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Villa-Uriol, M. C., G. Berti, D. R. Hose, A. Marzo, A. Chiarini, J. Penrose, J. Pozo, J. G. Schmidt, P. Singh, R. Lycett, I. Larrabide, and A. F. Frangi. @neurIST complex information processing toolchain for the integrated management of cerebral aneurysms. Interface Focus 1:308–319, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Wu, J., A. T. Kraja, A. Oberman, C. E. Lewis, R. C. Ellison, D. K. Arnett, G. Heiss, J.-M. Lalouel, S. T. Turner, S. C. Hunt, Ma Province, and D. C. Rao. A summary of the effects of antihypertensive medications on measured blood pressure. Am. J. Hypertens. 18:935–942, 2005.PubMedCrossRefGoogle Scholar
  29. 29.
    Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic—morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152, 2011.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Ali Sarrami-Foroushani
    • 1
  • Maria-Cruz Villa-Uriol
    • 2
  • Mohsen Nasr Esfahany
    • 1
  • Stuart C. Coley
    • 3
  • Luigi Yuri Di Marco
    • 2
  • Alejandro F. Frangi
    • 2
  • Alberto Marzo
    • 4
  1. 1.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Center for Computational Imaging and Simulation Technologies in Biomedicine, Department of Mechanical EngineeringUniversity of SheffieldSheffieldUK
  3. 3.Department of NeuroradiologyRoyal Hallamshire HospitalSheffieldUK
  4. 4.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations