Annals of Biomedical Engineering

, Volume 42, Issue 10, pp 2095–2105 | Cite as

Performance Assessment of a Brain–Computer Interface Driven Hand Orthosis

  • Christine E. King
  • Kunal R. Dave
  • Po T. Wang
  • Masato Mizuta
  • David J. Reinkensmeyer
  • An H. Do
  • Shunji Moromugi
  • Zoran Nenadic
Article

Abstract

Stroke survivors are typically affected by hand motor impairment. Despite intensive rehabilitation and spontaneous recovery, improvements typically plateau a year after a stroke. Therefore, novel approaches capable of restoring or augmenting lost motor behaviors are needed. Brain–computer interfaces (BCIs) may offer one such approach by using neurophysiological activity underlying hand movements to control an upper extremity orthosis. To test the performance of such a system, we developed an electroencephalogram-based BCI controlled electrically actuated hand orthosis. Six able-bodied participants voluntarily grasped/relaxed one hand to elicit BCI-mediated closing/opening of the orthosis mounted on the opposite hand. Following a short training/calibration procedure, participants demonstrated real-time, online control of the orthosis by following computer cues. Their performances resulted in an average of 1.15 (standard deviation: 0.85) false alarms and 0.22 (0.36) omissions per minute. Analysis of signals from electrogoniometers mounted on both hands revealed an average correlation between voluntary and BCI-mediated movements of 0.58 (0.13), with all but one online performance being statistically significant. This suggests that a BCI driven hand orthosis is feasible, and therefore should be tested in stroke individuals with hand weakness. If proven viable, this technology may provide a novel approach to the neuro-rehabilitation of hand function after stroke.

Keywords

Electroencephalography (EEG) Stroke Distal upper extremity weakness Neuro-rehabilitation 

Abbreviations

BCI

Brain–computer interface

FES

Functional electrical stimulation

PSD

Power spectral density

CPCA

Classwise principal component analysis

AIDA

Approximate information discriminant analysis

LDA

Linear discriminant analysis

AD

Analysis duration

PD

Posterior probability averaging duration

SD

Standard deviation

FA

False alarm

OM

Omission

References

  1. 1.
    Ball, T., A. Schreiber, B. Feige, M. Wagner, C. Hermann Lücking, and R. Kristeva-Feige. The role of higher-order motor area in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10:682–694, 1999.PubMedCrossRefGoogle Scholar
  2. 2.
    Buch, E., C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, and N. Birbaumer. Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39(3):910–917, 2008.PubMedCrossRefGoogle Scholar
  3. 3.
    Daly, J. J., R. Cheng, J. Rogers, K. Litinas, K. Hrovat, and M. Dohring. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Ther. 33(4):203–211, 2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Das, K. and Z. Nenadic. Approximate information discriminant analysis: a computationally simple heteroscedastic feature extraction technique. Pattern Recogn. 41(5):1548–1557, 2008.CrossRefGoogle Scholar
  5. 5.
    Das, K., and Z. Nenadic. An efficient discriminant-based solution for small sample size problem. Pattern Recogn. 42(5):857–866, 2009.CrossRefGoogle Scholar
  6. 6.
    Do, A. H., P. T. Wang, C. E. King, A. Abiri, and Z. Nenadic. Brain–computer interface controlled functional electrical stimulation system for ankle movement. J. Neuroeng. Rehabil. 8:49, 2011.Google Scholar
  7. 7.
    Do, A. H., P. T. Wang, C. E. King, S. N. Chun, and Z. Nenadic. Brain–computer interface controlled robotic gait orthosis. J. Neuroeng. Rehabil. 10:111, 2013.Google Scholar
  8. 8.
    Do, A. H., P. T. Wang, C. E. King, A. Schombs, S. C. Cramer, and Z. Nenadic. Brain–computer interface controlled functional electrical stimulation device for foot drop due to stroke. Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 6414–6417.Google Scholar
  9. 9.
    Duncan, P. W., and S. M. Lai. Stroke recovery. Top. Stroke Rehabil. 4(3):51–58, 1997.CrossRefGoogle Scholar
  10. 10.
    Jørgensen H. S. The Copenhagen stroke study experience. J. Stroke Cerebrovasc. Dis. 6(1):5–16, 1996PubMedCrossRefGoogle Scholar
  11. 11.
    King, C. E., P. T. Wang, L. A. Chui, A. H. Do, and Z. Nenadic. Operation of a brain–computer interface walking simulator for individuals with spinal cord injury. J. Neuroeng. Rehabil. 10:77, 2013.Google Scholar
  12. 12.
    King, C. E., P. T. Wang, M. Mizuta, D. J. Reinkensmeyer, A. H. Do, S. Moromugi, and Z. Nenadic. Noninvasive brain–computer interface driven hand orthosis. Proceedings of the 33th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 5786–5789.Google Scholar
  13. 13.
    Leeb, R., D. Friedman, G. Müller-Putz, R. Scherer, M. Slater, and G. Pfurtscheller. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 2007:79642, 2007.Google Scholar
  14. 14.
    Lin, K. C., Y. F. Chang, C. Y. Wu, and Y. A. Chen. Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors. Neurorehabil. Neural Repair 23(5):441–448, 2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Luft, A. R., S. McCombe-Waller, J. Whitall, L. W. Forrester, R. Macko, J. D. Sorkin, J. B. Schulz, A. P. Goldberg, and D. F. Hanley. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. J. Am. Med. Assoc. 292(15):1853–1861, 2004.CrossRefGoogle Scholar
  16. 16.
    Moromugi, S., K. Kawakami, K. Nakamura, T. Sakamoto, and T. Ishimatsu. A tendon-driven glove to restore finger function for disabled. Proceedings of the ICCAS-SICE International Joint Conference, 2009, pp. 794–797.Google Scholar
  17. 17.
    Pfurtscheller, G., G. R. Müller, J. Pfurtscheller, H. J. Gerner, and R. Rupp. ‘Thought’—control of functional electrical stimulation to restore hand grasp in patient with tetraplegia. Neurosci. Lett. 351(1):33–36, 2003.PubMedCrossRefGoogle Scholar
  18. 18.
    Pfurtscheller, G. and C. Neuper. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci. Lett. 174:93–96, 1994.PubMedCrossRefGoogle Scholar
  19. 19.
    Pfurtscheller, G., C. Neuper, C. Andrew, and G. Edlinger. Foot and hand area mu rhythms. Int. J. Psychophysiol. 26:121–135, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Prasad, G., P. Herman, D. Coyle, S. McDonough, and J. Crosbie. Applying a brain–computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7:60, 2010.Google Scholar
  21. 21.
    Ramos-Murguialday, A., D. Broetz, M. Rea, L. Läer, Ö. Yilmaz, F. L. Brasil, G. Liberati, M. R. Curado, E. Garcia-Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, S. Soekadar, A. Caria, L. G. Cohen, and N. Birbaumer. Brain–machine-interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74:100–108, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Silvoni, S., A. Ramos-Murguialday, M. Cavinato, C. Volpato, G. Cisotto, A. Turolla, F. Piccione, and N. Birbaumer. Brain–computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42(4): 245–252, 2011.PubMedCrossRefGoogle Scholar
  23. 23.
    Simpson, D. M., D. N. Alexander, C. F. O’Brien, M. Tagliati, A. S. Aswad, J. M. Leon, J. Gibson, J. M. Mordaunt, and E. P. Monaghan. Botulinum toxin type A in the treatment of upper extremity spasticity: a randomized, double-blind, placebo-controlled trial. Neurology 46:1306–1310, 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi, M., K. Takeda, Y. Otaka, R. Osu, T. Hanakawa, M. Gouko, and K. Ito. Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study. J. Neuroeng. Rehabil. 9:56, 2012.Google Scholar
  25. 25.
    van der Lee, J. H., R. C. Wagenaar, G. J. Lankhorst, T. W. Vogelaar, W. L. Deville, and L. M. Bouter. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 30(11):2369–2375, 1999.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, P. T., C. E. King, L. A. Chui, A. H. Do, and Z. Nenadic. Self-paced brain–computer interface control of ambulation in a virtual reality environment. J. Neural Eng. 9:056016, 2012.Google Scholar
  27. 27.
    Wang, P. T., C. E. King, A. H. Do, and Z. Nenadic. A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories. Med. Eng. Phys. 33(5):546–552, 2011.PubMedCrossRefGoogle Scholar
  28. 28.
    Wolf, S. L., C. J. Winstein, J. P. Miller, E. Taub, G. Uswatte, D. Morris, C. Giuliani, K. E. Light, and D. Nichols-Larsen. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke. J. Am. Med. Assoc. 296(17):2095–2104, 2006.CrossRefGoogle Scholar
  29. 29.
    Wolpaw, J. R., N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6):767–791, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Christine E. King
    • 1
  • Kunal R. Dave
    • 1
  • Po T. Wang
    • 1
  • Masato Mizuta
    • 2
  • David J. Reinkensmeyer
    • 1
    • 3
    • 4
  • An H. Do
    • 5
  • Shunji Moromugi
    • 6
  • Zoran Nenadic
    • 1
    • 7
  1. 1.Department of Biomedical EngineeringUniversity of California, Irvine (UCI)IrvineUSA
  2. 2.Department of Civil Engineering and Engineering MechanicsColumbia UniversityNew YorkUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUCIIrvineUSA
  4. 4.Department of Anatomy and NeurobiologyUCIIrvineUSA
  5. 5.Department of NeurologyUCIIrvineUSA
  6. 6.Department of Mechanical Systems EngineeringNagasaki UniversityNagasakiJapan
  7. 7.Department of Electrical Engineering and Computer ScienceUCIIrvineUSA

Personalised recommendations