Annals of Biomedical Engineering

, Volume 42, Issue 10, pp 2048–2057 | Cite as

Design Modifications and Computational Fluid Dynamic Analysis of an Outflow Cannula for Cardiopulmonary Bypass

  • Michael Neidlin
  • Sebastian Jansen
  • Anton Moritz
  • Ulrich Steinseifer
  • Tim A. S. Kaufmann


Cardiopulmonary bypass is a well-established technique during open heart surgeries. However, neurological complications due to insufficient cerebral oxygen supply occur and the severe consequences must not be neglected. Recent computational fluid dynamics (CFD) studies showed that during axillary cannulation the cerebral perfusion is strongly affected by the distance between the cannula tip and the vertebral artery branch. In this study we use two modifications of the cannula design to analyze the flow characteristics by means of CFD and experimental validation with particle image velocimetry (PIV). One approach applies a spin to the blood stream with a helical surface in the cannula cross section. Another approach uses radial bores in a constricted cannula tip to split the outflow jet. The additional helicity improves the perfusion of the cerebral vessels and suppresses the blood suction in the right vertebral artery observed with a standard cannula. The cannula with a helix throughout the entire length changes the blood flow from −124 to 32 mL/min in comparison with an unmodified design and has the lowest prediction of blood damage. Separating the blood stream does not deliver satisfying results. The PIV measurements validate the simulations and correspond with the velocity distribution as well as vortex locations.


Hemodynamics Particle image velocimetry Cerebral perfusion Cannulation Simulation 

Supplementary material

10439_2014_1064_MOESM1_ESM.docx (430 kb)
Supplementary material 1 (DOCX 430 kb)


  1. 1.
    Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-Newtonian blood flow in an end-to-end anastomosis. Biorheology 31(5):565–586, 1994.PubMedGoogle Scholar
  2. 2.
    Bludszuweit, C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19(7):590–596, 1995.PubMedCrossRefGoogle Scholar
  3. 3.
    Brodman, R., H. Siegel, M. Lesser, and A. Frater. A comparison of flow gradients across disposable perfusion cannulae. Ann. Thorac. Surg. 39:225–233, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Caro, C., and D. Doorly. Modified cannula US5997516A—USA, 12 7, 1999.Google Scholar
  5. 5.
    Fukuda, I., S. Osanai, M. Shirota, T. Inamura, H. Yanaoka, M. Minakawa, and K. Fukui. Computer-simulated fluid dynamics of arterial perfusion in extracorporeal circulation: from reality to virtual simulation. Int. J. Artif. Org. 32(6):362–370, 2009.Google Scholar
  6. 6.
    Gerdes, A., T. H. Hanke, and H. H. Sievers. Hydrodynamics of new medos aortic cannula. Perfusion 17(3):217–220, 2002.PubMedCrossRefGoogle Scholar
  7. 7.
    Gerdes, A., E. Joubert-Huebner, K. Esders, and H. H. Sievers. Hydrodynamics of aortic arch vessels during perfusion through the right subclavian artery. Ann. Throc. Surg. 69(5):1425–1430, 2000.CrossRefGoogle Scholar
  8. 8.
    Ji, B., and A. Undar. An evaluation of the benefits of pulsatile vs. nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients. ASAIO J. 52(4):357–361, 2006.PubMedCrossRefGoogle Scholar
  9. 9.
    Kapetanakis, E. I., S. C. Stamou, M. K. Dullum, P. C. Hill, E. Halle, S. W. Boyce, A. S. Bafi, K. R. Petro, and P. J. Corso. The impact of aortic manipulation on neurologic outcomes after coronary artery bypass surgery: a risk-adjusted study. Ann. Thorac. Surg. 78(5):1564–1571, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaufmann, T. A., M. Hormes, L. Laumen, D. L. Timms, T. Linde, T. Schmitz-Rode, A. Moritz, O. Dzemali, and U. Steinseifer. Flow distribution during cardiopulmonary bypass in dependency on the outflow cannula positioning. Artif. Organs. 33(11):988–992, 2009.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaufmann, T. A., M. Hormes, L. Laumen, D. L. Timms, T. Linde, T. Schmitz-Rode, A. Moritz, O. Dzemali, and U. Steinseifer. The impact of aortic/subclavian outflow cannulation for cardiopulmonary bypass and cardiac support: a computational fluid dynamics study. Artif. Organs 33(9):727–732, 2009.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaufmann, T. A., M. Neidlin, M. Büsen, S. J. Sonntag, and U. Steinseifer. Implementation of intrinsic lumped parameter modeling into computational fluid dynamics studies of cardiopulmonary bypass. J. Biomech. 47(3):729–735, 2014.PubMedCrossRefGoogle Scholar
  13. 13.
    Kaufmann, T. A., T. Schmitz-Rode, and U. Steinseifer. Implementation of cerebral autoregulation into computational fluid dynamics studies of cardiopulmonary bypass. Artif. Organs 36(8):754–758, 2012.PubMedCrossRefGoogle Scholar
  14. 14.
    Laumen, M., T. A. Kaufmann, D. L. Timms, P. Schlanstein, S. Jansen, S. Gregory, K. Wong, T. Schmitz-Rode, and U. Steinseifer. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Artif. Organs 34(19):798–806, 2010.PubMedCrossRefGoogle Scholar
  15. 15.
    Menon, P. G., J. F. Antaki, A. Undar, and K. Pekkan. Aortic outflow cannula tip design and orientation impacts cerebral perfusion during pediatric cardiopulmonary bypass procedures. Ann. Biomed. Eng. 41:2588–2602, 2013.PubMedCrossRefGoogle Scholar
  16. 16.
    Paulson, O. B., S. Strandgaard, and L. Edvinsson. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 2:161–192, 1990.PubMedGoogle Scholar
  17. 17.
    Saunders Soft-Flow aortic cannula tip US2006/0253059A1—USA, 11 09, 2006.Google Scholar
  18. 18.
    Scarborough, J. E., W. White, F. E. Derilus, J. P. Mathew, M. F. Newman, and K. P. Landolfo. Neurological outcomes after coronary artery bypass grafting with and without cardiopulmonary bypass. Semin. Thorac. Cardiovasc. Surg. 15(1):52–62, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Schell, R. M., F. H. Kern, W. J. Greeley, S. R. Schulman, P. E. Frasco, N. D. Croughwell, M. Newman, and J. G. Reves. Cerebral blood flow and metabolism during cardiopulmonary bypass. Anesth. Analg. 76(4):849–865, 1993.PubMedGoogle Scholar
  20. 20.
    Taskin, M. E., K. H. Fraser, T. Zhang, C. Wu, B. P. Griffith, and Z. J. Wu. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J. 58(4):363–372, 2012.PubMedCrossRefGoogle Scholar
  21. 21.
    Tokuda, Y., M. H. Song, Y. Ueda, A. Usui, T. Akita, S. Yoneyama, and S. Maruyama. Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 33(2):164–167, 2008.PubMedCrossRefGoogle Scholar
  22. 22.
    Undar, A., T. Masai, O. H. Frazier, and C. D. Fraser, Jr. Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons. ASAIO J. 45(6):610–614, 1999.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang, T., M. E. Taskin, and H. B. Fang. Study of flow-induced hemolysis using novel Couette-type blood shearing devices. Artif. Organs 35:1071–1085, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Michael Neidlin
    • 1
  • Sebastian Jansen
    • 1
  • Anton Moritz
    • 2
  • Ulrich Steinseifer
    • 1
  • Tim A. S. Kaufmann
    • 1
  1. 1.Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  2. 2.Department of Thoracic and Cardiovascular SurgeryJ.W. Goethe University HospitalFrankfurtGermany

Personalised recommendations