Advertisement

Annals of Biomedical Engineering

, Volume 42, Issue 9, pp 1989–2001 | Cite as

Simulation of Self Expanding Transcatheter Aortic Valve in a Realistic Aortic Root: Implications of Deployment Geometry on Leaflet Deformation

  • Paul S. Gunning
  • Ted J. Vaughan
  • Laoise M. McNamara
Article

Abstract

Self expanding Transcatheter Aortic Valve Replacements (TAVR) can conform to the geometry of the aortic annulus and the calcified leaflet complex, which may result in leaflet distortion and altered leaflet kinematics, but such changes have not yet been characterized. In this study we developed a computational model to investigate the deployment of a self expanding TAVR in a realistic aortic root model derived from multi-slice computed tomography (MSCT) images. We simulated TAVR crimping/deployment in realistic and idealized aortic root models, followed by diastolic loading of the TAVR leaflets in its final deployed configuration. The TAVR deployed in a realistic aortic root had increased peak loading in the commissural region of the leaflets compared to TAVRs under idealized circular deployment conditions (2.97 vs. 1.52 MPa). Furthermore, orientation of the TAVR in the asymmetric aortic annulus such that the commissures of the TAVR are aligned with the native valve commissures minimized the effect of TAVR stent distortion on peak stresses in the TAVR leaflets (2.97 vs. 2.35 MPa). We propose that preoperative planning of the orientation of the TAVR in the aortic root annulus might minimize the impact of potential stent distortion on leaflet function and may in turn increase long term leaflet durability.

Keywords

Transcatheter aortic valve Finite element analysis Self expanding Patient-specific 

Notes

Acknowledgments

The authors acknowledge funding from the Engineering and Informatics Fellowship, National University of Ireland Galway, Science Foundation Ireland Short Term Travel Fellowship Award and the Irish Centre for High-End Computing (ICHEC).

Disclosures

None.

References

  1. 1.
    Auricchio, F., M. Conti, A. Ferrara, S. Morganti, and A. Reali. Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput. Methods Biomech. 17:277–285, 2012.CrossRefGoogle Scholar
  2. 2.
    Auricchio, F., M. Conti, S. Morganti, and A. Reali. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Engin. 17:1347–1357, 2014.Google Scholar
  3. 3.
    Auricchio, F., and R. L. Taylor. Shape-memory alloys: modeling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Biomech. 143:175–194, 1997.CrossRefGoogle Scholar
  4. 4.
    Auricchio, F., R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodeling and numerical simulations of the superelastic behavior. Comput. Methods Biomech. 146:281–312, 1997.CrossRefGoogle Scholar
  5. 5.
    Blanke, P., M. Russe, J. Leipsic, J. Reinöhl, U. Ebersberger, P. Suranyi, M. Siepe, G. Pache, M. Langer, and U. J. Schoepf. Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. J. Am. Coll. Cardiol. Interv. 5:984–994, 2012.CrossRefGoogle Scholar
  6. 6.
    Capelli, C., G. Bosi, E. Cerri, J. Nordmeyer, T. Odenwald, P. Bonhoeffer, F. Migliavacca, A. Taylor, and S. Schievano. Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50:183–192, 2012.PubMedCrossRefGoogle Scholar
  7. 7.
    Cavero, M. A., J. Goicolea, C. García-Montero, and J. F. Oteo. Prognostic implications of asymmetric morphology in transcatheter aortic valve implantation: a case report. Rev. Esp. Cardiol. 65:104–105, 2012.PubMedCrossRefGoogle Scholar
  8. 8.
    Einstein, D. R., P. Reinhall, M. Nicosia, R. P. Cochran, and K. Kunzelman. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Methods Biomech. 6:33–44, 2003.CrossRefGoogle Scholar
  9. 9.
    Gunning, P., N. Saikrishnan, L. McNamara, and A. Yoganathan. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann. Biomed. Eng. 42:1195–1206, 2014.PubMedCrossRefGoogle Scholar
  10. 10.
    Hamdan, A., V. Guetta, E. Konen, O. Goitein, A. Segev, E. Raanani, D. Spiegelstein, I. Hay, E. Di Segni, M. Eldar, and E. Schwammenthal. Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J. Am. Coll. Cardiol. 59:119–127, 2012.PubMedCrossRefGoogle Scholar
  11. 11.
    Iung, B., G. Baron, E. G. Butchart, F. Delahaye, C. Gohlke-Bärwolf, O. W. Levang, P. Tornos, J.-L. Vanoverschelde, F. Vermeer, E. Boersma, P. Ravaud, and A. Vahanian. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 24:1231–1243, 2003.PubMedCrossRefGoogle Scholar
  12. 12.
    Jermihov, P., L. Jia, M. Sacks, R. Gorman, J. Gorman, and K. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2:48–56, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kleinstreuer, C., Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41:2370–2378, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Kuetting, M., A. Sedaghat, M. Utzenrath, J.-M. Sinning, C. Schmitz, J. Roggenkamp, N. Werner, T. Schmitz-Rode, and U. Steinseifer. In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. J. Biomech. 47:957–965, 2014.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee, J. M., S. A. Haberer, and D. R. Boughner. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium. J. Biomed. Mater. Res. 23:457–475, 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Li, K., and W. Sun. Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann. Biomed. Eng. 38:2690–2701, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Marlow, R. S. A general first-invariant hyperelastic constitutive model. In: Constitutive Models for Rubber III, edited by J. J. C. Busfield and A. H. Muhr. Lisse: Swets & Zeitlinger Publishers, 2003, pp. 157–160.Google Scholar
  18. 18.
    Martin, C., and W. Sun. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech. Model. Mechanobiol. 2013. doi: 10.1007/s10237-013-0532-x.
  19. 19.
    Padala, M., E. Sarin, P. Willis, V. Babaliaros, P. Block, R. Guyton, and V. Thourani. An engineering review of transcatheter aortic valve technologies. Cardiovasc. Eng. Technol. 1:77–87, 2010.CrossRefGoogle Scholar
  20. 20.
    Rachev, A., and S. E. Greenwald. Residual strains in conduit arteries. J. Biomech. 36:661–670, 2003.PubMedCrossRefGoogle Scholar
  21. 21.
    Rodes-Cabau, J. Transcatheter aortic valve implantation: current and future approaches. Nat. Rev. Cardiol. 9:15–29, 2012.CrossRefGoogle Scholar
  22. 22.
    Russ C., R. Hopf, S. Hirsch, S. Sundermann, V. Falk, G. Szekely, and M. Gessat. Simulation of transcatheter aortic valve implantation under consideration of leaflet calcification. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2013, pp. 711–714.Google Scholar
  23. 23.
    Sacks, M., and C. J. Chuong. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Eng. 26:892–902, 1998.PubMedCrossRefGoogle Scholar
  24. 24.
    Sacks, M. S., M. W. David, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42:1804–1824, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Saikrishnan, N., S. Gupta, and A. P. Yoganathan. Hemodynamics of the Boston Scientific Lotus™ Valve: an in vitro study. Cardiovasc. Eng. Technol. 4(4):427–439, 2013.Google Scholar
  26. 26.
    Schultz, C. J., A. Weustink, N. Piazza, A. Otten, N. Mollet, G. Krestin, R. J. van Geuns, P. de Feyter, P. W. J. Serruys, and P. de Jaegere. Geometry and degree of apposition of the CoreValve ReValving System with multislice computed tomography after implantation in patients with aortic stenosis. J. Am. Coll. Cardiol. 54:911–918, 2009.PubMedCrossRefGoogle Scholar
  27. 27.
    Smuts, A. N., D. C. Blaine, C. Scheffer, H. Weich, A. F. Doubell, and K. H. Dellimore. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. 4:85–98, 2011.CrossRefGoogle Scholar
  28. 28.
    Soncini, M., E. Votta, S. Zinicchino, V. Burrone, A. Mangini, M. Lemma, C. Antona, and A. Redaelli. Aortic root performance after valve sparing procedure: a comparative finite element analysis. Med. Eng. Phys. 31:234–243, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Sun, W., K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J. Biomech. 43:3085–3090, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Sung, H.-W., Y. Chang, C.-T. Chiu, C.-N. Chen, and H.-C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47:116–126, 1999.PubMedCrossRefGoogle Scholar
  31. 31.
    Trowbridge, E. A., and C. E. Crofts. The extension rate independence of the hysteresis in glutaraldehyde-fixed bovine pericardium. Biomaterials 8:201–206, 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    Tseng, E. E., A. Wisneski, A. N. Azadani, and L. Ge. Engineering perspective on transcatheter aortic valve implantation. Int. Cardiol. 5:53–70, 2013.CrossRefGoogle Scholar
  33. 33.
    Tzamtzis, S., J. Viquerat, J. Yap, M. J. Mullen, and G. Burriesci. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35:125–130, 2013.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, Q., E. Sirois, and W. Sun. Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J. Biomech. 45:1965–1971, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Xiong, F., W. Goetz, C. Chong, Y. Chua, S. Pfeifer, E. Wintermantel, and J. Yeo. Finite element investigation of stentless pericardial aortic valves: relevance of leaflet geometry. Ann. Biomed. Eng. 38:1908–1918, 2010.PubMedCrossRefGoogle Scholar
  36. 36.
    Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery—determination of the optimum modeling strategy. J. Biomech. 43:2126–2132, 2010.PubMedCrossRefGoogle Scholar
  37. 37.
    Zegdi, R., V. Ciobotaru, N. Miléna, S. Ghassan, L. Antoine, L. Christian, D. Alain, and F. Jean-Noël. Is it reasonable to treat all calcified stenotic aortic valves with a valved stent?: results from a human anatomic study in adults. J. Am. Coll. Cardiol. 51:579–584, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Paul S. Gunning
    • 1
  • Ted J. Vaughan
    • 1
  • Laoise M. McNamara
    • 1
  1. 1.Biomechanics Research Centre (BMEC), Department of Biomedical EngineeringNational University of Ireland GalwayGalwayIreland

Personalised recommendations