Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hand-Held Medical Robots

Abstract

Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    Ang, W. T., P. K. Pradeep, and C. N. Riviere. Active tremor compensation in microsurgery. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2738–2741, 2004.

  2. 2.

    Ang, W. T., C. N. Riviere, and P. K. Khosla. An active hand-held instrument for enhanced microsurgical accuracy. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 878–886, 2000.

  3. 3.

    Bebek, O., and M. C. Cavusoglu. Intelligent control algorithms for robotic-assisted beating heart surgery. IEEE Trans. Robot. 23:468–480, 2007.

  4. 4.

    Becker, B. C. Micron Virtual Fixtures (TRO’12). http://vimeo.com/35301249. Accessed 12 June 2014.

  5. 5.

    Becker, B. C. State Estimation + Kalman Filter (IROS’11). http://vimeo.com/35301558. Accessed 12 June 2014.

  6. 6.

    Becker, B. C., R. A. Maclachlan, G. D. Hager, and C. N. Riviere. Handheld micromanipulation with vision-based virtual fixtures. In: IEEE International Conference on Robotics and Automation, pp. 4127–4132, 2011.

  7. 7.

    Becker, B. C., R. A. MacLachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere. Vision-based control of a handheld surgical micromanipulator with virtual fixtures. IEEE Trans. Robot. 29:674–683, 2013.

  8. 8.

    Becker, B. C., C. R. Valdivieso, J. Biswas, L. A. Lobes, and C. N. Riviere. Active guidance for laser retinal surgery with a handheld instrument. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5587–5590, 2009.

  9. 9.

    Becker, B. C., S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere. Retinal vessel cannulation with an image-guided handheld robot. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5420–5423, 2010.

  10. 10.

    Becker, B. C., S. Voros, R. A. Maclachlan, G. D. Hager, and C. N. Riviere. Active guidance of a handheld micromanipulator using visual servoing. In: IEEE International Conference on Robotics and Automation pp. 339–344, 2009.

  11. 11.

    BlueBelt Technologies Inc. Navio PFS. http://www.bluebelttech.com/products/. Accessed 15 May 2014.

  12. 12.

    Brisson, G., T. Kanade, A. M. DiGioia III, and B. Jaramaz. Precision freehand sculpting of bone. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 105–112, 2004.

  13. 13.

    Chang, D., G. M. Gu, and J. Kim. Design of a novel tremor suppression device using a linear delta manipulator for micromanipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 413–418, 2013.

  14. 14.

    Cuevas Tabares, J., R. A. Maclachlan, C. A. Ettensohn, and C. N. Riviere. Cell micromanipulation with an active handheld micromanipulator. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4363–4366, 2010.

  15. 15.

    Cutler, N., M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, and J. T. Handa. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery. Invest. Ophthalmol. Vis. Sci. 54:1316–1324, 2013.

  16. 16.

    D’Attanasio, S., O. Tonet, G. Megali, M. C. Carrozza, and P. Dario. A semi-automatic handheld mechatronic endoscope with collision-avoidance capabilities. In: IEEE International Conference on Robotics and Automation, pp. 1586–1591, 2000.

  17. 17.

    Dario, P., M. C. Carrozza, M. Marcacci, S. D’Attanasio, B. Magnami, O. Tonet, and G. Megali. A novel mechatronic tool for computer-assisted arthroscopy. IEEE Trans. Inf. Technol. Biomed. 4:15–29, 2000.

  18. 18.

    Dario, P., B. Hannaford, and A. Menciassi. Smart surgical tools and augmenting devices. IEEE Trans. Robot. Autom. 19:782–792, 2003.

  19. 19.

    Davies, B. A review of robotics in surgery. Proc. Inst. Mech. Eng. 214:129–140, 2000.

  20. 20.

    Florez, J. M., D. Bellot, and G. Morel. LWPR-model based predictive force control for serial comanipulation in beating heart surgery. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 320–326, 2011.

  21. 21.

    Florez, J. M., J. Szewczyk, and G. Morel. An impedance control strategy for a hand-held instrument to compensate for physiological motion. In: IEEE International Conference on Robotics and Automation, pp. 1952–1957, 2012.

  22. 22.

    Focacci, F., M. Piccigallo, O. Tonet, G. Megali, A. Pietrabissa, and P. Dario. Lightweight hand-held robot for laparoscopic surgery. In: IEEE International Conference on Robotics and Automation, pp. 599–604, 2007.

  23. 23.

    Follmann, A., A. Korff, T. Fuertjes, S. C. Kunze, K. Schmieder, and K. Radermacher. A novel concept for smart trepanation. Craniofac. Surg. 23:309–314, 2012.

  24. 24.

    Gafford, J. B., S. B. Kesner, R. J. Wood, and C. J. Walsh. Force-sensing surgical grasper enabled by pop-up book MEMS. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2552–2558, 2013.

  25. 25.

    Gilbertson, M. Force-measuring ultrasound probe. https://www.youtube.com/watch?v=0lgsjUfdGS0. Accessed 15 May 2014.

  26. 26.

    Gilbertson, M. W., and B. W. Anthony. Ergonomic control strategies for a handheld force-controlled ultrasound probe. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1284–1291, 2012.

  27. 27.

    Gonenc, B., M. A. Balicki, J. Handa, P. Gehlbach, C. N. Riviere, R. H. Taylor, and I. Iordachita. Evaluation of a micro-force sensing handheld robot for vitreoretinal surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4125–4130, 2012.

  28. 28.

    Gupta, P., P. Jensen, and E. Juan, Jr. Surgical forces and tactile perception during retinal microsurgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 1218–1225, 1999.

  29. 29.

    Hackethal, A., M. Koppan, K. Eskef, and H. R. Tinneberg. Handheld articulating laparoscopic instruments driven by robotic technology. First clinical experience in gynecological surgery. Gynecol. Surg. 9:203–206, 2011.

  30. 30.

    Harris, S. J., F. Arambula-Cosio, Q. Mei, R. D. Hibberd, B. L. Davies, J. E. Wickham, M. S. Nathan, and B. Kundu. The Probot–an active robot for prostate resection. Proc. Inst. Mech. Eng 211:317–325, 1997.

  31. 31.

    Harwell, R. C., and R. L. Ferguson. Physiologic tremor and microsurgery. Microsurgery 4:187–192, 1983.

  32. 32.

    Hassan-Zahraee, A., B. Herman, and J. Szewczyk. Mechatronic design of a hand-held instrument with active trocar for laparoscopy. In: IEEE International Conference on Robotics and Automation, pp. 1890–1895, 2011.

  33. 33.

    He, X., M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita. Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery. SPIE BiOS Int. Soc. Optics. Photonics: 82180W–82180W, 2012.

  34. 34.

    Hotraphinyo, L. F., and C. N. Riviere. Three-dimensional accuracy assessment of eye surgeons. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3458–3461, 2001.

  35. 35.

    Howe, R. D., and Y. Matsuoka. Robotics for surgery. Annu. Rev. Biomed. Eng. 1:211–240, 1999.

  36. 36.

    Jakopec, M., S. Harris, F. Rodriguez y Baena, P. Gomes, J. Cobb, and B. Davies. Preliminary results of an early clinical experience with the acrobot™ system for total knee replacement surgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 256–263, 2002.

  37. 37.

    Kane, G., G. Eggers, R. Boesecke, J. Raczkowsky, H. Wörn, R. Marmulla, and J. Mühling. System design of a hand-held mobile robot for craniotomy. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 402–409, 2009.

  38. 38.

    Kazanzides, P., B. D. Mittelstadt, B. L. Musits, W. L. Bargar, J. F. Zuhars, B. Williamson, P. W. Cain, and E. J. Carbone. An integrated system for cementless hip replacement. IEEE Eng. Med. Biol. Mag. 14:307–313, 1995.

  39. 39.

    Kuebler, B., U. Seibold, and G. Hirzinger. Development of actuated and sensor integrated forceps for minimally invasive robotic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 1:96–107, 2005.

  40. 40.

    Kwoh, Y. S., J. Hou, E. A. Jonckheere, and S. Hayati. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35:153–160, 1988.

  41. 41.

    Latt, W. T., T. P. Chang, A. Di Marco, P. Pratt, K.-W. Kwok, J. Clark, and G.-Z. Yang. A hand-held instrument for in vivo probe-based confocal laser endomicroscopy during minimally invasive surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1982–1987, 2012.

  42. 42.

    Latt, W. T., R. C. Newton, M. Visentini-Scarzanella, C. J. Payne, D. P. Noonan, J. Shang, and G.-Z. Yang. A hand-held instrument to maintain steady tissue contact during probe-based confocal laser endomicroscopy. IEEE Trans. Biomed. Eng. 58:2694–2703, 2011.

  43. 43.

    Latt, W. T., U. X. Tan, C. N. Riviere, and W. T. Ang. Placement of accelerometers for high sensing resolution in micromanipulation. Sensors Actuators 167:304–316, 2011.

  44. 44.

    Latt, W. T., U. X. Tan, C. Y. Shee, and W. T. Ang. A compact hand-held active physiological tremor compensation instrument. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 711–716, 2009.

  45. 45.

    Latt, W. T., U. X. Tan, C. Y. Shee, C. N. Riviere, and W. T. Ang. Compact sensing design of a handheld active tremor compensation instrument. IEEE Sens. J. 9:1864–1871, 2009.

  46. 46.

    Lee, R., B. Wu, R. Klatzky et al. Hand-held force magnifier for surgical instruments: evolution toward a clinical device. In: Augmented Environments for Computer-Assisted Interventions, pp. 77–89, 2013.

  47. 47.

    Maclachlan, R. A., B. C. Becker, J. C. Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere. Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans. Robot. 28:195–212, 2012.

  48. 48.

    Maclachlan, R. A., and C. N. Riviere. High-speed microscale optical tracking using digital frequency-domain multiplexing. IEEE Trans. Instrum. Meas. 58:1991–2001, 2009.

  49. 49.

    Matsuhira, N., M. Jinno, T. Miyagawa, et al. Development of a functional model for a master–slave combined manipulator for laparoscopic surgery. Adv. Robot. 17:523–539, 2003.

  50. 50.

    Montes Grande, G., A. J. Knisely, B. C. Becker, S. Yang, B. E. Hirsch, and C. N. Riviere. Handheld micromanipulator for robot-assisted stapes footplate surgery. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1422–1425, 2012.

  51. 51.

    Newton, R. C., D. Noonan, C. Payne, J. Andreyev, A. Di Marco, M. V. Scarzanella, A. Darzi, and G. Z. Yang. Probe tip contact force and bowel distension affect crypt morphology during confocal endomicroscopy. Gut 60:A12–A13, 2011.

  52. 52.

    Okazawa, S., R. Ebrahimi, J. Chuang, S. E. Salcudean, and R. Rohling. Hand-held steerable needle device. IEEE/ASME Trans. Mechatron. 10:285–296, 2005.

  53. 53.

    Patkin, M. Ergonomics applied to the practice of microsurgery. Aust. N Z. J. Surg. 47:320–329, 1977.

  54. 54.

    Payne, C. J., K.-W. Kwok, and G.-Z. Yang. An ungrounded hand-held surgical device incorporating active constraints with force-feedback. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2559–2565, 2013.

  55. 55.

    Payne, C. J., W. T. Latt, and G.-Z. Yang. A new hand-held force-amplifying device for micromanipulation. In: IEEE International Conference on Robotics and Automation, pp. 1583–1588, 2012.

  56. 56.

    Payne, C. J., H. Rafii-Tari, and G.-Z. Yang. A force feedback system for endovascular catheterisation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1298–1304, 2012.

  57. 57.

    Payne, C. J., H. Rafii-Tari, H. J. Marcus, and G.-Z. Yang. Hand-held microsurgical forceps with force-feedback for micromanipulation. In: IEEE International Conference on Robotics and Automation [Accepted], 2014.

  58. 58.

    Piccigallo, M., F. Focacci, O. Tonet, G. Megali, C. Quaglia, and P. Dario. Hand-held robotic instrument for dextrous laparoscopic interventions. Int. J. Med. Robot. Comput. Assist. Surg. 4:331–338, 2008.

  59. 59.

    Rafii-Tari, H., C. J. Payne, and G.-Z. Yang. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann. Biomed. Eng. 42(4):697–715, 2013.

  60. 60.

    Salcudean, S. E., S. Ku, and G. Bell. Performance measurement in scaled teleoperation for microsurgery. In: First Joint Conference Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery, pp. 789–798, 1997.

  61. 61.

    Salcudean, S. E., and J. Yan. Towards a force-reflecting motion-scale system for microsurgery. In: IEEE International Conference on Robotics and Automation, pp. 2296–2301, 1994.

  62. 62.

    Saxena, A., and R. V. Patel. An active handheld device for compensation of physiological tremor using an ionic polymer metallic composite actuator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4275–4280, 2013.

  63. 63.

    Shang, J. i-Snake® NOTES Tubal Ligation. https://www.youtube.com/watch?v=ep4ob4OqBXE. Accessed 15 May 2014.

  64. 64.

    Shang, J., D. P. Noonan, C. Payne, J. Clark, M. H. Sodergren, A. Darzi, and G. Z. Yang. An articulated universal joint based flexible access robot for minimally invasive surgery. In: IEEE International Conference on Robotics and Automation, pp. 1147–1152, 2011.

  65. 65.

    Song, C., D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang. Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery. Biomed. Optics. Exp. 4:1045–1050, 2013.

  66. 66.

    Stetten, G., B. Wu, R. Klatzky et al. Hand-held force magnifier for surgical instruments. In: Augmented Environments for Computer-Assisted Interventions, pp. 90–100, 2011.

  67. 67.

    Sutherland, G. R., P. B. McBeth, and D. F. Louw. Neuroarm: an MR compatible robot for microsurgery. In: Computer Assisted Radiology and Surgery, pp. 504–508, 2003.

  68. 68.

    Tan, U. X., W. T. Latt, C. Y. Shee, and W. T. Ang. A low-cost flexure-based handheld mechanism for micromanipulation. IEEE/ASME Trans. Mechatron. 16:773–778, 2011.

  69. 69.

    Tan, U. X., K. C. Veluvolu, W. T. Latt, C. Y. Shee, C. N. Riviere, and W. T. Ang. Estimating displacement of periodic motion with inertial sensors. IEEE Sens. J. 8:1385–1388, 2009.

  70. 70.

    Taylor, R., P. Jensen, L. Whitcomb et al. A steady-hand robotic system for microsurgical augmentation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 1031–1041, 1999.

  71. 71.

    Taylor, R. H., B. D. Mittelstadt, H. A. Paul, et al. An image-directed robotic system for precise orthopaedic surgery. IEEE Trans. Robot. Autom. 10:261–275, 1994.

  72. 72.

    Tholey, G., J. P. Desai, and A. E. Castellanos. Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann. Surg. 241:102–109, 2005.

  73. 73.

    Uneri, A., M. A. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, and I. Iordachita. New steady-hand eye robot with micro-force sensing for vitreoretinal surgery. In: IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics pp. 814–819, 2010.

  74. 74.

    Westebring-van der Putten, E. P., R. H. M. Goossens, J. J. Jakimowicz, and J. Dankelman. Haptics in minimally invasive surgery—a review. Min. Invasive Therapy Allied Technol. 17:3–16, 2008.

  75. 75.

    Wolfe, B. M. Endoscopic cholecystectomy. Arch. Surg. 126:1192–1196, 1991.

  76. 76.

    Yamashita, H., N. Hata, M. Hashizume, and T. Dohi. Handheld laparoscopic forceps manipulator using multi-slider linkage mechanisms. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 121–128, 2004.

  77. 77.

    Yang, S., M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere. Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012, pp. 948–951, 2012.

  78. 78.

    Yang, S., R. A. MacLachlan, and C. N. Riviere. Design and analysis of 6 DOF handheld micromanipulator. In: IEEE International Conference on Robotics and Automation, pp. 1946–1951, 2012.

  79. 79.

    Yao, H.-Y., V. Hayward, and R. E. Ellis. A tactile enhancement instrument for minimally invasive surgery. Comput. Aided. Surg. 10:233–239, 2005.

  80. 80.

    Yuen, S. G., K.-A. Dubec, and R. D. Howe. Haptic noise cancellation: restoring force perception in robotically-assisted beating heart surgery. In: IEEE Haptics Symposium, pp. 387–392, 2010.

  81. 81.

    Yuen, S. G., D. P. Perrin, and N. V. Vasilyev. P. J. d. Nido, and R. D. Howe. Force tracking with feed-forward motion estimation for beating heart surgery. IEEE Trans. Robot. 26:888–896, 2010.

  82. 82.

    Yuen, S. G., M. C. Yip, N. V. Vasilyev, D. P. Perrin, P. J. Del Nido, and R. D. Howe. Robotic force stabilization for beating heart intracardiac surgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 26–33, 2009.

  83. 83.

    Zahraee, A. H., J. K. Paik, J. Szewczyk, and G. Morel. Toward the development of a hand-held surgical robot for laparoscopy. IEEE/ASME Trans. Mechatron. 15(6):853–861, 2010.

Download references

Acknowledgments

This work was supported by a Wates Foundation Fellowship.

Conflict of interest

None. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Correspondence to Christopher J. Payne.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Payne, C.J., Yang, G. Hand-Held Medical Robots. Ann Biomed Eng 42, 1594–1605 (2014). https://doi.org/10.1007/s10439-014-1042-4

Download citation

Keywords

  • Hand-held robots
  • Surgical robots
  • Smart devices
  • Tremor suppression
  • Active guidance
  • Haptic feedback
  • Force feedback
  • Force control
  • Active constraints