Annals of Biomedical Engineering

, Volume 42, Issue 9, pp 1901–1912 | Cite as

Neuromuscular Complexity During Gait is not Responsive to Medication in Persons with Parkinson’s Disease

  • Ryan T. RoemmichEmail author
  • Benjamin J. Fregly
  • Chris J. Hass


The purpose of this study was to investigate the effects of dopaminergic therapy on neuromuscular complexity during gait and on the relationship between neuromuscular complexity and gait speed in persons with Parkinson’s disease (PD). Nine persons with PD walked at self-selected speed for 5 min after having withdrawn from dopaminergic medication for at least 12 h and while optimally-medicated. Electromyographic recordings were taken from eight leg muscles bilaterally. Non-negative matrix factorization was applied to reduce the dimensionality of the electromyographic signals into motor modules. We assessed neuromuscular complexity by investigating the number, structure, and timing of the modules. We also investigated the influence of dopaminergic medication on the relationships between neuromuscular complexity and gait speed. Though gait speed increased significantly after medication intake, medication did not affect neuromuscular complexity. Neuromuscular complexity was significantly associated with gait speed only while the participants were medicated. Thus, the supraspinal structures that govern neuromuscular complexity during gait do not appear to be solely dopaminergically-influenced in PD. The lack of dopaminergic influence on neuromuscular complexity may explain why persons with PD exhibit gait slowness even while medicated, and an intervention that restores neuromuscular complexity may result in gait speed improvement in PD.


Motor modules Muscle Lower extremity Electromyography Dopamine Levodopa Non-negative matrix factorization Decomposition 



This work was supported in part by NIH grants 1R21AG033284-01A2 and UF National Parkinson’s Foundation Center of Excellence. We would also like to thank Dr. Umer Akbar and Dr. Nawaz Hack for their assistance in scoring the UPDRS videos.

Conflict of interest

The authors declare that there are no relevant conflicts of interest.


  1. 1.
    Allen, J. L., S. A. Kautz, and R. R. Neptune. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance. Clin. Biomech. (Bristol, Avon) 28:697–704, 2013.CrossRefGoogle Scholar
  2. 2.
    Allen, J. L., and R. R. Neptune. Three-dimensional modular control of human walking. J. Biomech. 45:2157–2163, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Amano, S., R. T. Roemmich, J. W. Skinner, and C. J. Hass. Ambulation and Parkinson disease. Phys. Med. Rehabil. Clin. N. Am. 24:371–392, 2013.PubMedCrossRefGoogle Scholar
  4. 4.
    Birkmayer, W., and O. Hornykiewicz. The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien KlinWochenschr. 73:787–788, 1961.Google Scholar
  5. 5.
    Blin, O., A. M. Ferrandez, J. Pailhous, and G. Serratrice. Dopa-sensitive and dopa-resistant gait parameters in Parkinson’s disease. J. Neurol. Sci. 103:51–54, 1991.PubMedCrossRefGoogle Scholar
  6. 6.
    Bohnen, N. I., K. A. Frey, S. Studenski, V. Kotagal, R. A. Koeppe, P. J. Scott, R. L. Albin, and M. L. Müller. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology. 81:1611–1616, 2013.PubMedCrossRefGoogle Scholar
  7. 7.
    Bohnen, N. I., M. L. Müller, R. A. Koeppe, S. A. Studenski, M. A. Kilbourn, K. A. Frey, and R. L. Albin. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology. 73:1670–1676, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Cheung, V. C., A. d’Avella, M. C. Tresch, and E. Bizzi. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 25:6419–6434, 2005.PubMedCrossRefGoogle Scholar
  9. 9.
    Chvatal, S. A., J. M. Macpherson, G. Torres-Oviedo, and L. H. Ting. Absence of postural muscle synergies for balance after spinal cord transection. J. Neurophysiol. 110:1301–1310, 2005.CrossRefGoogle Scholar
  10. 10.
    Clark, D. J., L. H. Ting, F. E. Zajac, R. R. Neptune, and S. A. Kautz. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 103:844–857, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Cotzias, G. C., M. H. Van Woert, and L. M. Schiffer. Aromatic amino acids and modification of parkinsonism. N. Engl. J. Med. 276:374–379, 1967.PubMedCrossRefGoogle Scholar
  12. 12.
    Dingwell, J. B., and L. C. Marin. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39:444–452, 2006.PubMedCrossRefGoogle Scholar
  13. 13.
    Ellis, T., J. T. Cavanaugh, G. M. Earhart, M. P. Ford, K. B. Foreman, and L. E. Dibble. Which measures of physical function and motor impairment best predict quality of life in Parkinson’s disease? Parkinsonism Relat. Disord. 17:693–697, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Giszter, S. F., M. R. Davies, and V. Graziani. Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations. J. Neurophysiol. 97:2663–2675, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Grillner, S., P. Wallén, K. Saitoh, A. Kozlov, and B. Robertson. Neural bases of goal-directed locomotion in vertebrates–an overview. Brain Res. Rev. 57:2–12, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Hass, C. J., M. D. Bishop, M. Moskovich, E. L. Stegemöller, J. W. Skinner, I. A. Malaty, A. Wagle Shukla, K. N. McFarland, and M. S. Okun. Defining the clinically meaningful difference in gait speed in Parkinson’s disease. J. Neurol. Phys. Ther. (2014, accepted).Google Scholar
  17. 17.
    Hirsch, E. C., A. M. Graybiel, C. Duyckaerts, and F. Javoy-Agid. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclearpalsy. Proc. Natl Acad. Sci. U.S.A. 84:5976–5980, 1987.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ivanenko, Y. P., G. Cappellini, N. Dominici, R. E. Poppele, and F. Lacquaniti. Coordination of locomotion with voluntary movements in humans. J. Neurosci. 25:7238–7253, 2005.PubMedCrossRefGoogle Scholar
  19. 19.
    Ivanenko, Y. P., R. E. Poppele, and F. Lacquaniti. Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556:267–282, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Karachi, C., D. Grabli, F. A. Bernard, D. Tandé, N. Wattiez, H. Belaid, E. Bardinet, A. Prigent, H. P. Nothacker, S. Hunot, A. Hartmann, S. Lehéricy, E. C. Hirsch, and C. François. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Invest. 120:2745–2754, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Knutsson, E. An analysis of Parkinsonian gait. Brain 95:475–486, 1972.PubMedCrossRefGoogle Scholar
  22. 22.
    Krystkowiak, P., J. L. Blatt, J. L. Bourriez, A. Duhamel, M. Perina, S. Blond, J. D. Guieu, A. Destée, and L. Defebvre. Effects of subthalamic nucleus stimulation and levodopa treatment on gait abnormalities in Parkinson disease. Arch. Neurol. 60:80–84, 2003.PubMedCrossRefGoogle Scholar
  23. 23.
    Morris, M. E., R. Iansek, T. A. Matyas, and J. J. Summers. The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain. 117:1169–1181, 1994.PubMedCrossRefGoogle Scholar
  24. 24.
    Müller, M. L., R. L. Albin, V. Kotagal, R. A. Koeppe, P. J. Scott, K. A. Frey, and N. I. Bohnen. Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain. 136:3282–3289, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Neptune, R. R., D. J. Clark, and S. A. Kautz. Modular control of human walking: a simulation study. J. Biomech. 42:1282–1287, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Pierantozzi, M., M. G. Palmieri, S. Galati, P. Stanzione, A. Peppe, D. Tropepi, L. Brusa, A. Pisani, V. Moschella, M. G. Marciani, P. Mazzone, and A. Stefani. Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J. Neural Transm. 115:731–735, 2008.PubMedCrossRefGoogle Scholar
  27. 27.
    Rochester, L., A. J. Yarnall, M. R. Baker, R. V. David, S. Lord, B. Galna, and D. J. Burn. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s disease. Brain. 135:2779–2788, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Rodriguez, K. L., R. T. Roemmich, B. Cam, B. J. Fregly, and C. J. Hass. Persons with Parkinson’s disease exhibit decreased neuromuscular complexity during gait. Clin. Neurophysiol. 124:1390–1397, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Roh, J., V. C. Cheung, and E. Bizzi. Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol. 106:1363–1378, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rolland, A. S., D. Tandé, M. T. Herrero, M. R. Luquin, M. Vazquez-Claverie, C. Karachi, E. C. Hirsch, and C. François. Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J. Neurochem. 110:1321–1329, 2009.PubMedCrossRefGoogle Scholar
  31. 31.
    Routson, R. L., D. J. Clark, M. G. Bowden, S. A. Kautz, and R. R. Neptune. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 38:511–517, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ryczko, D., S. Grätsch, F. Auclair, C. Dubé, S. Bergeron, M. H. Alpert, J. J. Cone, M. F. Roitman, S. Alford, and R. Dubuc. Forebrain dopamine neurons project down to a brainstem region controlling locomotion. Proc. Natl Acad. Sci. U.S.A. 110:3235–3242, 2013.CrossRefGoogle Scholar
  33. 33.
    Shulman, L. M., A. L. Gruber-Baldini, K. E. Anderson, P. S. Fishman, S. G. Reich, and W. J. Weiner. The clinically important difference on the unified Parkinson’s disease rating scale. Arch. Neurol. 67:64–70, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Spaulding, S. J., B. Barber, M. Colby, B. Cormack, T. Mick, and M. E. Jenkins. Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis. Arch. Phys. Med. Rehabil. 94(3):562–570, 2013.PubMedCrossRefGoogle Scholar
  35. 35.
    Ting, L. H., and S. A. Chvatal. Decomposing muscle activity in motor tasks: methods and interpretation. In: Motor Control: Theories, Experiments, and Applications, edited by F. Danion, and M. L. Latash. Oxford: Oxford University Press, 2010, pp. 102–138.CrossRefGoogle Scholar
  36. 36.
    Ting, L. H., and J. M. Macpherson. A limited set of muscle synergies for force control during a postural task. J. Neurophysiol. 93:609–613, 2005.PubMedCrossRefGoogle Scholar
  37. 37.
    Torres-Oviedo, G., J. M. Macpherson, and L. H. Ting. Muscle synergy organization is robust across a variety of postural perturbations. J. Neurophysiol. 96:1530–1546, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Tresch, M. C., V. C. Cheung, and A. d’Avella. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol. 95:2199–2212, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Ryan T. Roemmich
    • 1
    • 2
    Email author
  • Benjamin J. Fregly
    • 3
  • Chris J. Hass
    • 4
  1. 1.Motion Analysis LaboratoryKennedy Krieger InstituteBaltimoreUSA
  2. 2.Department of NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  4. 4.Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations