Annals of Biomedical Engineering

, Volume 42, Issue 8, pp 1573–1593 | Cite as

Closed-Loop Brain–Machine–Body Interfaces for Noninvasive Rehabilitation of Movement Disorders

  • Frédéric D. Broccard
  • Tim Mullen
  • Yu Mike Chi
  • David Peterson
  • John R. Iversen
  • Mike Arnold
  • Kenneth Kreutz-Delgado
  • Tzyy-Ping Jung
  • Scott Makeig
  • Howard Poizner
  • Terrence Sejnowski
  • Gert Cauwenberghs


Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson’s disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders.


Brain–machine–body interface Closed-loop systems Movement disorders Noninvasive Rehabilitation 



The authors acknowledge support from National Science Foundation grant EFRI-1137279 (M3C: Mind, Machines, and Motor Control). DP would like to acknowledge support from the Bachmann-Strauss Dystonia & Parkinson’s Foundation, the Benign Essential Blepharospasm Research Foundation, the dystonia Coalition (NS065701), the Kavli Institute for Brain and Mind and a grant from the NSF to the Temporal Dynamics of Learning Center (SBE-0542013). HP is supported by the NSF grant #SMA-1041755 and the ONR MURI Award No.: N00014-10-1-0072. SM would like to acknowledge a gift from The Swartz Foundation (Old Field NY) and the NINDS grant R01-NS047293-09A1. The authors would like to recognize the contributions of Alejandro Ojeda Gonzalez for designing the MoBILAB environment and Christian Kothe for designing the data collection system LSL and the BCILAB extension for the MoBI setup. The authors would like to thank Nikil Govil and Abraham Akinin for carrying out preliminary experiments on proprioception with Parkinson’s disease patients and Trevor Kerth from Cognionics for help and assistance during data collection with the 64-channel dry EEG headset. The authors also would like to thank all the participants at the 2012 IEEE EMB/CAS/SMC workshop on Brain–Machine–Body Interfaces in San Diego, as well as the participants at the 2012 NSF EFRI Grantees Conference in Washington DC, for insightful interactions and discussions.


  1. 1.
    Afshar, P., A. Khambhati, S. Stanslaski, D. Carlson, R. Jensen, D. Linde, S. Dani, M. Lazarewicz, P. Cong, J. Giftakis, P. Stypulkowski, and T. Denison. A translational platform for prototyping closed-loop neuromodulation systems. Front. Neural Circuits 6:117, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Albanese, A., K. Bhatia, S. B. Bressman, M. R. DeLong, S. Fahn, V. S. C. Fung, M. Hallett, J. Jankovic, H. A. Jinnah, C. Klein, A. E. Lang, J. W. Mink, and J. K. Teller. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28:863–873, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Alberts, J. L., C. Voelcker-Rehage, K. Hallahan, M. Vitek, R. Bamzai, and J. L. Vitek. Bilateral subthalamic stimulation impairs cognitive-motor performance in Parkinson’s disease patients. Brain 131:3348–3360, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ashby, R. An Introduction to Cybernetics. London: Chapman & Hall, 1956.Google Scholar
  5. 5.
    Astrom, K. J., and B. Wittenmark. Adaptive Control (2nd ed.). Hoboken, New Jersey: Addison-Wesley, 1994.Google Scholar
  6. 6.
    Bai, O., M. Nakamura, and H. Shibasaki. Compensation of hand movement for patients by assistant force: relationship between human hand movement and robot arm motion. IEEE Trans. Neural Sys. Rehabil. Eng. 9(3):302–307, 2001.CrossRefGoogle Scholar
  7. 7.
    Baram, Y. Walking on tiles. Neural Process. Lett. 10:81–87, 1999.CrossRefGoogle Scholar
  8. 8.
    Baram, Y., J. Aharon-Peretz, Y. Simionovici, and L. Ron. Walking on virtual tiles. Neural Process. Lett. 16:227–233, 2002.CrossRefGoogle Scholar
  9. 9.
    Baram, Y., and A. Miller. Virtual reality cues for improvement of gait in patients with multiple sclerosis. Neurology 66:178–181, 2006.PubMedCrossRefGoogle Scholar
  10. 10.
    Bashashati, A., M. Fatourechi, R. K. Ward, and G. E. Birsh. A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 4:R32–R57, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Berns, G. S., and T. S. Sejnowski. A computational model of how the basal ganglia produce sequences. J. Cogn. Neurosci. 10:108–121, 1998.PubMedCrossRefGoogle Scholar
  12. 12.
    Blankertz, B., G. Curio, and K. R. Muller. Classifying single trial EEG: Towards brain–computer interfacing. In: Advances in Neural Information Processing Systems 14, edited by Dietterich, T. G., Becker S., and Ghahramani, Z. Cambridge, MA: MIT Press, 2002, pp. 157–164.Google Scholar
  13. 13.
    Boahen, K. A. Point-to-point connectivity between neuromorphic chips using address-events. IEEE Trans. Circuits Syst. II 47:416–434, 2000.CrossRefGoogle Scholar
  14. 14.
    Bogacz, R., and T. Larsen. Integration of reinforcement learning and optimal decision-making theories of the basal ganglia. Neural Comput. 23:817–851, 2011.PubMedCrossRefGoogle Scholar
  15. 15.
    Bradberry, T. J., R. J. Gentili, and J. L. Contreras-Vidal. Fast attainment of computer cursor control with noninvasively acquired brain signals. J. Neural Eng. 8:036010, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Brittain, J. S., P. Robert-Smith, T. Z. Aziz, and P. Brown. Tremor suppression by rhythmic transcranial current stimulation. Curr. Biol. 23:436–440, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Carabalona, R., P. Castiglioni, and F. Gramatica. Brain-computer interfaces and neurorehabilitation. Stud. Health Technol. Inf. 145:160–176, 2009.Google Scholar
  18. 18.
    Carmena, J. M., M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. Nicolelis. Learning to control a brain–machine interface for reaching and grasping in primates. PLoS Biol. 1:E42, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Casadio, M., A. Pressman, S. Acosta, Z. Danziger, A. Fishbach, F. A. Mussa-Ivaldi, K. Muir, H. Tseng, and D. Chen. Body machine interface: remapping motor skills after spinal cord injury. In: Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR’11), Zurich, Switzerland, June/July, 2011.Google Scholar
  20. 20.
    Casadio, M., R. Ranganathan, and F. Mussa-Ivaldi. The body–machine interface: a new perspective on an old theme. J. Mot. Behav. 44:419–433, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Chakravarthy, V. S., D. Joseph, and R. S. Bapi. What do the basal ganglia do? A modeling perspective. Biol. Cybern. 103:237–253, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Chapin, J. K., K. A. Moxon, R. S. Markowitz, and M. A. Nicolelis. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2(7):664–670, 1999.PubMedCrossRefGoogle Scholar
  23. 23.
    Chi, Y. M., and G. Cauwenberghs. Micropower integrated bioamplifier and auto-ranging ADC for wireless and implantable medical instrumentation. In: Proceedings of the IEEE European Solid State Circuits Conference (ESSCIRC’10), Sevilla, Spain, September 13–17, 2010.Google Scholar
  24. 24.
    Chi, Y. M., and G. Cauwenberghs. Wireless non-contact biopotential electrode. In: Proceedings Body Sensor Networks (BSN), BioPolis, Singapore, 7–9 June 2010.Google Scholar
  25. 25.
    Chi, Y. M., T. P. Jung, and G. Cauwenberghs. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3:106–120, 2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Chi, Y. M., C. Maier, and G. Cauwenberghs. Ultra-high input impedance, low noise integrated amplifier for noncontact biopotential sensing. IEEE. J. Emerg. Select. Topics Circuits Syst. 1:526–535, 2011.CrossRefGoogle Scholar
  27. 27.
    Chi, Y. M., Y.-T. Wang, Y. Wang, C. Maier, T.-P. Jung, and G. Cauwenberghs. Dry and noncontact EEG sensors for mobile brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 20:228–235, 2012.PubMedCrossRefGoogle Scholar
  28. 28.
    Columbo, R., F. Pisano, A. Mazzone, C. Delconte, S. Micera, M. C. Carrozza, P. Dario, and G. Minuco. Design strategies to improve patient motivation during robot-aided rehabilitation. J. Neuroeng. Rehabil. 4:3, 2007.CrossRefGoogle Scholar
  29. 29.
    Contreras-Vidal, J. L., and G. E. Stelmach. A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol. Cybern. 73:467–476, 1995.PubMedCrossRefGoogle Scholar
  30. 30.
    Cymbalyuk, G. S., G. N. Patel, R. L. Calabrese, S. P. Deweerth, and A. H. Cohen. Modeling alternation to synchrony with inhibitory coupling: a neuromorphic VLSI approach. Neural Comput. 12:2259–2278, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Daly, J. J., and J. R. Wolpaw. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7:1032–1043, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Dangi, S., A. L. Orsborn, H. G. Moorman, and J. M. Carmena. Design and analysis of closed-loop adaptation algorithms for brain–machine interfaces. Neural Comput. 25:1693–1731, 2013.PubMedCrossRefGoogle Scholar
  33. 33.
    Deco, G., V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4(8):e1000092, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    del R. Millán, J. Adaptive brain interfaces. Commun. ACM 46:75–80, 2003.CrossRefGoogle Scholar
  35. 35.
    Delbruck, T. Silicon retina with correlation-based, velocity-tuned pixels. IEEE Trans. Neural Netw. 4:529–541, 1993.PubMedCrossRefGoogle Scholar
  36. 36.
    Delorme, A., and S. Makeig. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134:9–21, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Delorme, A., T. Mullen, C. Kothe, Z. Akalin Acar, N. Bigdely-Shamlo, A. Vankov, and S. Makeig. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput. Intell. Neurosci. 2011:130714, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    DiGiovanna, J., C. Mahmoudi, J. Fortes, J. C. Principe, and J. C. Sanchez. Coadaptive brain–machine interface via reinforcement learning. IEEE Trans. Biomed. Eng. 56:54–64, 2009.PubMedCrossRefGoogle Scholar
  39. 39.
    Doud, A. J., J. P. Lucas, M. T. Pisansky, and B. He. Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain–computer interface. PLoS ONE 6:e26322, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Eberle, W., J. Penders, and R. Firat Yazicioglu. Closing the loop for deep brain stimulation implants enables personalized healthcare for Parkinsons disease patients. In: Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBS’11), Boston, Massachusetts USA, August 30–September 3, 2011.Google Scholar
  41. 41.
    Elahi, B., B. Elahi, and R. Chen. Effect of transcranial magnetic stimulation on Parkinson motor function–systematic review of controlled clinical trials. Mov. Disord. 24:357–363, 2009.PubMedCrossRefGoogle Scholar
  42. 42.
    Emken, J. L., R. Benitez, and D. J. Reinkensmeyer. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J. Neuroeng. Rehabil. 4:8, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Emken, J. L., S. J. Harkema, J. Beres-Jones, C. K. Ferreira, and D. J. Reinkensmeyer. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans. Biomed. Eng. 55:322–334, 2008.PubMedCrossRefGoogle Scholar
  44. 44.
    Espay, A. J., Y. Baram, A. Kumar Dwivedi, R. Shukla, M. Gartner, L. Gaines, A. P. Duker, and F. J. Revilla. At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinson disease. J. Rehabil. Res. Dev. 47:573–582, 2010.PubMedCrossRefGoogle Scholar
  45. 45.
    Espay, A. J., L. Gaines, and R. Gupta. Sensory feedback in Parkinson’s disease with on-predominant freezing of gait. Front. Neurol. 4:14, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Felton, E., R. Radwin, J. Wilson, and J. Williams. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals. J. Neural Eng. 6:056002, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Feng, X.-J., B. Greenwald, H. Rabitz, E. Shea-Brown, and R. Kosut. Towards closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. J. Neural Eng. 4:L14–L21, 2007.PubMedCrossRefGoogle Scholar
  48. 48.
    Feng, X.-J., E. Shea-Brown, B. Greenwald, R. Kosut, and H. Rabitz. Optimal deep brain stimulation of the subthalamic nucleus—a computational study. J. Comp. Neurosci. 23:265–282, 2007.CrossRefGoogle Scholar
  49. 49.
    Fregni, F., and A. Pascual-Leone. Technology insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3:383–393, 2007.PubMedCrossRefGoogle Scholar
  50. 50.
    Fregni, R., D. K. Simon, A. Wu, and A. Pascual-Leone. Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J. Neurol. Neurosurg. Psychiatry 6:1614–1623, 2005.CrossRefGoogle Scholar
  51. 51.
    Frucht, S. J. The definition of dystonia: current concepts and controversies. Mov. Disord. 28:884–888, 2013.PubMedCrossRefGoogle Scholar
  52. 52.
    Ganguly, K., and J. M. Carmena. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7:e1000153, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Ganguly, K., D. F. Dimitrov, J. D. Wallis, and J. M. Carmena. Reversible large-scale modification of cortical networks during neuroprosthetic control. Nat. Neurosci. 14:662–667, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Gatev, P., and T. Wichmann. Interactions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and Parkinsonian state. Cereb. Cortex 19(6):1330–1344, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Gilja, V., P. Nuyujukian, C. A. Chestek, J. P. Cunningham, B. M. Yu, J. M. Fan, M. M. Churchland, M. T. Kaufman, J. C. Cao, S. I. Ryu, and K. V. Shenoy. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15:1752–1757, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Gilja, V., P. Nuyujukian, C. Chestek, J. Cunningham, B. Yu, S. Ryu, and K. Shenoy. High-performance continuous neural cursor control enabled by feedback control perspective. In: Front. Neurosci. Comp. Syst. Neurosci. Conf., 2010.Google Scholar
  57. 57.
    Goldberg, D. H., G. Cauwenberghs, and A. G. Andreou. Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons. Neural Netw. 14:781–793, 2001.PubMedCrossRefGoogle Scholar
  58. 58.
    Govil, N., A. Akinin, S. Ward, J. Snider, M. Plank, G. Cauwenberghs, and H. Poizner. The role of proprioceptive feedback in parkinsonian resting tremor. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’13), Osaka, Japan, 3–7 July 2013.Google Scholar
  59. 59.
    Gramann, K., J. T. Gwin, N. Bigdely-Shamlo, D. P. Ferris, and S. Makeig. Visual evoked responses during standing and walking. Front. Hum. Neurosci. 4:202, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Gramann, K., J. T. Gwin, D. P. Ferris, K. Oie, T.-P. Jung, C. T. Lin, L. D. Liao, and S. Makeig. Cognition in action: imaging brain/body dynamics in mobile humans. Rev. Neurosci. 22(6):593–608, 2011.PubMedGoogle Scholar
  61. 61.
    Guadagnoli, M. A., and T. D. Lee. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Motor Behav. 36(2):212–224, 2004.CrossRefGoogle Scholar
  62. 62.
    Hale, K., and K. Stanney. Deriving haptic design guidelines from human physiological and neurological foundation. IEEE Comput. Graph. Appl. 24(2):39, 2004.CrossRefGoogle Scholar
  63. 63.
    Hasler, J., and B. Marr. Finding a roadmap to achieve large neuromorphic hardware systems. Front. Neurosci. 7:118, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    He, B., Y. Dai, L. Astolfi, F. Babiloni, H. Yuan, and L. Yang. eConnectome: a MATLAB toolbox for mapping and imaging of brain functional connectivity. J. Neurosci. Methods 195:261–269, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    He, L., and C. Yang. Wilke, and H. Yuan. Electrophysiological imaging of brain activity and connectivity—challenges and opportunities. IEEE Trans. Biomed. Eng. 58:1918–1931, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Hikosaka, O., and M. Isoda. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn. Sci. 14:154–161, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Hochberg, L. R., M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171, 2005.CrossRefGoogle Scholar
  68. 68.
    Holden, M. K. Virtual environment for motor rehabilitation: review. CyberPsychol. Behav. 8(3):187–211, 2005.PubMedCrossRefGoogle Scholar
  69. 69.
    IEEE EMB/CAS/SMC. Workshop on Brain–Machine–Body Interfaces, San Diego, CA, 27 August 2012,
  70. 70.
    Jackson, A., J. Mavoori, and E. E. Fetz. Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444:56–60, 2006.PubMedCrossRefGoogle Scholar
  71. 71.
    Jarosiewicz, B., S. M. Chase, G. W. Fraser, M. Velliste, R. E. Kass, and A. B. Schwartz. Functional network reorganization during learning in a brain–computer interface paradigm. Proc. Natl. Acad. Sci. U.S.A. 105:19486–19491, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Jarosiewicz, B., N. Y. Masse, D. Bacher, S. S. Cash, E. Eskandar, G. Friehs, J. P. Donoghue, and L. R. Hochberg. Advantages of closed-loop calibration in intracortical brain–computer interfaces for people with tetraplegia. J. Neural Eng. 10:046012, 2013.PubMedCrossRefGoogle Scholar
  73. 73.
    Kahn, L. E., M. L. Zygman, W. Z. Rymer, and D. J. Reinkensmeyer. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J. Neuroeng. Rehabil. 3:12, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Koralek, A. C., R. M. Costa, and J. M. Carmena. Temporally precise cell-specific coherence develops in corticostriatal networks during learning. Neuron 79(5):865–872, 2013.PubMedCrossRefGoogle Scholar
  75. 75.
    Koralek, A. C., X. Jin, J. D. Long, II, R. M. Costa, and J. M. Carmena. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483:331–335, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Kothe, C. A., and S. Makeig. BCILAB: a platform for brain–computer interface development. J. Neural Eng. 10:056014, 2013.PubMedCrossRefGoogle Scholar
  77. 77.
    Krebs, H. I., and N. Hogan. Robotic therapy: the tipping point. Am. J. Phys. Med. Rehabil. 91:S290–S297, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Krebs, H. I., J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B. T. Volpe, and N. Hogan. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonom. Robots 15:7–20, 2003.CrossRefGoogle Scholar
  79. 79.
    Kwakkel, G., B. J. Kollen, and H. I. Krebs. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 22(2):111–121, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Lebedev, M. A., and M. A. Nicolelis. Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9):536–546, 2006.PubMedCrossRefGoogle Scholar
  81. 81.
    Lewis, M. A., R. Etienne-Cummings, M. H. Hartmann, A. H. Cohen, and Z. R. Xu. An in silico central pattern generator: silicon oscillator, coupling, entrainment, physical computation and biped mechanism control. Biol. Cybern. 88:137–151, 2003.PubMedCrossRefGoogle Scholar
  82. 82.
    Li, F., P. Harmer, K. Fitzgerald, E. Eckstrom, R. Stock, J. Galver, G. Maddalozzo, and S. S. Batya. Tai Chi and postural stability in patients with Parkinson’s disease. N. Engl. J. Med. 366:511–519, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Li, Z., J. E. O’Doherty, M. A. Lebedev, and M. A. Nicolelis. Adaptive decoding for brain–machine interfaces through Bayesian parameter updates. Neural Comput. 23:3162–3204, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Li, J., Y. Wang, L. Zhang, and T.-P. Jung. Combining ERPs and EEG spectral features for decoding intended movement direction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012:1769–1772, 2012.PubMedGoogle Scholar
  85. 85.
    Lima, L. O., A. Scianni, and F. Rodrigues-de-Paula. Progressive resistance exercise improves strength and physical performance in people with mild to moderate Parkinson’s disease: a systematic review. J. Physiother. 59(1):7–13, 2013.PubMedCrossRefGoogle Scholar
  86. 86.
    Little, S., and P. Brown. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann. N. Y. Acad. Sci. 1265:9–24, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Little, S., and P. Brown. The functional role of beta oscillations in Parkinson’s disease. Parkinsonism Relat. Disord. 20(suppl 1):S44–S48, 2014.PubMedCrossRefGoogle Scholar
  88. 88.
    Little, S., A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, T. Foltynie, P. Limousin, K. Ashkan, J. FitzGerald, A. L. Green, T. Aziz, and P. Brown. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74:449–457, 2013.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Liu, C., and B. He. Noninvasive estimation of global activation sequence using the extended Kalman filter. IEEE Trans. Biomed. Eng. 58:541–549, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Lo, A. C., V. C. Chang, M. A. Gianfrancesco, J. H. Friedman, T. S. Patterson, and D. F. Benedicto. Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: a pilot study. J. Neuroeng. Rehabil. 7:51, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Long, J., Y. Li, H. Wang, T. Yu, J. Pan, and F. Li. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans. Neural Syst. Rehabil. Eng. 20:720–729, 2012.PubMedCrossRefGoogle Scholar
  92. 92.
    Lotte, F., M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi. A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4:R1–R13, 2007.PubMedCrossRefGoogle Scholar
  93. 93.
    Lotze, M., C. Braun, N. Birbaumer, S. Anders, and L. G. Cohen. Motor learning elicited by voluntary drive. Brain 126(4):866–872, 2003.PubMedCrossRefGoogle Scholar
  94. 94.
    Lukos, J. R., J. Snider, M. E. Hernandez, E. Tunik, S. Hillyard, and H. Poizner. Parkinson’s disease patients show impaired corrective grasp control and eye-hand coupling when reaching to grasp virtual objects. Neuroscience 254:205–221, 2013.PubMedCrossRefGoogle Scholar
  95. 95.
    Lyons, K. E., and R. Pahwa. Pharmacotherapy of essential tremor: an overview of existing and upcoming agents. CNS Drug 22:1037–1045, 2008.CrossRefGoogle Scholar
  96. 96.
    Lyons, K. E., R. Pahwa, C. L. Comella, M. S. Eisa, R. J. Elble, S. Fahn, J. Jankovic, J. L. Juncos, W. C. Koller, W. G. Ondo, K. D. Sethi, M. B. Stern, C. M. Tanner, R. Tintner, and R. L. Watts. Benefits and risks of pharmacological treatments for essential tremor. Drug Saf. 26:461–481, 2003.PubMedCrossRefGoogle Scholar
  97. 97.
    Mahmoudi, B., and J. C. Sanchez. A symbiotic brain–machine interface through value-based decision making. PLoS ONE 6:e14760, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Makeig, S., K. Gramann, T.-P. Jung, T. J. Sejnowski, and H. Poizner. Linking brain, mind and behavior. Int. J. Psychophysiol. 73:95–100, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Marchal-Crespo, L., and D. J. Reinkensmeyer. Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6:20, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Mavoori, J., A. Jackson, C. Diorio, and E. Fetz. An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J. Neurosci. Methods 148:71–77, 2005.PubMedCrossRefGoogle Scholar
  101. 101.
    Mead, C. Analog VLSI and Neural Systems. Hoboken, New Jersey: Addison-Wesley, 1989.CrossRefGoogle Scholar
  102. 102.
    Minogue, J., and M. G. Jones. Haptics in education: exploring an untapped sensory modality. Rev. Educ. Res. 76(3):3–17, 2006.CrossRefGoogle Scholar
  103. 103.
    Modolo, J., A. Beuter, A. W. Thomas, and A. Legros. Using “smart stimulators” to treat Parkinson’s disease: re-engineering neurostimulation devices. Front. Comput. Neurosci. 6:69, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Molier, B., E. Van Asseldonk, H. Hermens, and M. Jannink. Nature, timing, frequency and type of augmented feedback; does it influence motor relearning of the hemiparetic arm after stroke? A systematic review. Disab. Rehabil. 32(22):1799–1809, 2010.CrossRefGoogle Scholar
  105. 105.
    Mullen, T., C. Kothe, Y. M. Chi, A. Ojeda, T. Kerth, S. Makeig, and T.-P. Jung. Real-time estimation and 3D visualization of source dynamics and connectivity using wearable EEG. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Biology & Medicine Society (EBMS’13), Osaka, Japan, July 3–7, 2013.Google Scholar
  106. 106.
    Muller, K. R., G. Curio, B. Blankertz, and G. Dornhege. Combining features for BCI. In: Advances in Neural Information Processing Systems (NIPS02) 15, edited by Becker, S., Thrun, S., and Obermayer, K., British Columbia, Canada, 2003, pp. 1115–1122.Google Scholar
  107. 107.
    Mussa-Ivaldi, F. A., M. Casadio, and R. Ranganathan. The body–machine interface: a pathway for rehabilitation and assistance in people with movement disorders. Expert Rev. Med. Devices 10:145–147, 2013.PubMedCrossRefGoogle Scholar
  108. 108.
    O’Suilleabhain, P., J. Bullard, and R. B. Dewey. Proprioception in Parkinson’s disease is acutely depressed by dopaminergic medications. J. Neurol. Neurosurg. Psychiatry 71:607–610, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Orsborn, A. L., and J. M. Carmena. Creating new functional circuits for action via brain–machine interfaces. Front. Comp. Neurosci. 7:157, 2013.Google Scholar
  110. 110.
    Orsborn, A. L., S. Dangi, H. G. Moorman, and J. M. Carmena. Exploring time-scales of closed-loop decoder adaptation in brain–machine interfaces. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:5436–5439, 2011.PubMedGoogle Scholar
  111. 111.
    Orsborn, A. L., S. Dangi, H. G. Moorman, and J. M. Carmena. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 20:468–477, 2012.PubMedCrossRefGoogle Scholar
  112. 112.
    Oviatt, S., R. Coulston, and R. Lunsford. When do we interact multimodally? Cognitive load and multimodal communication patterns. In: Proceedings of the 6th International Conference on Multimodal Interfaces. New York: ACM, 2004, pp. 129–136.Google Scholar
  113. 113.
    Pascual-Leone, A., A. Amedi, F. Fregni, and L. B. Merabet. The plastic human brain cortex. Annu. Rev. Neurosci. 28:377–401, 2005.PubMedCrossRefGoogle Scholar
  114. 114.
    Peterson, D. A., P. Berque, H. C. Jabusch, E. Altenmuller, and S. J. Frucht. Rating scales for musician’s dystonia: the state of the art. Neurology 81:589–598, 2013.PubMedCrossRefGoogle Scholar
  115. 115.
    Peterson, D. A., T. J. Sejnowski, and H. Poizner. Convergent evidence for abnormal striatal synaptic plasticity in dystonia. Neurobiol. Dis. 37:558–573, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Petzinger, G. M., B. E. Fisher, S. McEwen, J. A. Beeler, J. P. Walsh, and M. W. Jakowec. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 12:716–726, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Pizzolato, G., and T. Mandat. Deep brain stimulation for movement disorders. Front. Integr. Neurosci. 6:2, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Pollok, B., V. Krause, W. Martsch, C. Wach, A. Schnitzler, and M. Südmeyer. Motor-cortical oscillations in early stages of Parkinson’s disease. J. Physiol. 590:3203–3212, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Poor, H. V. An Introduction to Signal Detection and Estimation. New York: Springer, 1994.CrossRefGoogle Scholar
  120. 120.
    Priori, A., G. Foffani, L. Rossi, and S. Marceglia. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol. 245:77–86, 2013.PubMedCrossRefGoogle Scholar
  121. 121.
    Raja, M., and A. R. Bentivoglio. Impulsive and compulsive behaviors during dopamine replacement treatment in Parkinson’s disease and other disorders. Curr. Drug Saf. 7:63–75, 2012.PubMedCrossRefGoogle Scholar
  122. 122.
    Rasch, M., N. K. Logothetis, and G. Kreiman. From neurons to circuits: linear estimation of local field potentials. J. Neurosci. 29(44):13785–13796, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Rascol, O., P. Payoux, F. Ory, J. J. Ferreira, C. Brefel-Courbon, and J. L. Montastruc. Limitations of current Parkinson’s disease therapy. Ann. Neurol. 53(Supp. 3):S3–S12, 2003.PubMedCrossRefGoogle Scholar
  124. 124.
    Redgrave, P., M. Rodriguez, Y. Smith, M. C. Rodriguez-Oroz, S. Lehericy, H. Bergman, Y. Agid, M. R. DeLong, and J. A. Obeso. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat. Rev. Neurosci. 11:760–772, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Reinkensmeyer, D. J. How to retrain movement after neurologic injury: a computational rationale for incorporating robot (or therapist) assistance. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS, pp. 1479–1482, 2003.Google Scholar
  126. 126.
    Reinkensmeyer, D. J., J. L. Emken, and S. C. Cramer. Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6:497–525, 2004.PubMedCrossRefGoogle Scholar
  127. 127.
    Rosin, B., M. Slovik, R. Mitelman, M. Rivlin-Etzion, S. N. Haber, Z. Israel, E. Vaadia, and H. Bergman. Closed-loop deep brain stimulation is superior in amerliorating Parkinsonism. Neuron 72:370–384, 2011.PubMedCrossRefGoogle Scholar
  128. 128.
    Rossini, P. M., and G. Dal Forno. Integrated technology for evaluation of brain function and neural plasticity. Phys. Med. Rehabil. Clin. N. Am. 15(1):263–306, 2004.PubMedCrossRefGoogle Scholar
  129. 129.
    Royer, A. S., and B. He. Goal selection versus process control in a brain–computer interface based on sensorimotor rhythms. J. Neural Eng. 6:016005, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Salmoni, S. Knowledge of results and motor learning. A review and critical reappraisal. Psychol. Bull. 95(3):355–386, 1984.PubMedCrossRefGoogle Scholar
  131. 131.
    Sanchez, J. C., B. Mahmoudi, J. DiGiovanna, and J. C. Principe. Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants. Neural Netw. 22:305–315, 2009.PubMedCrossRefGoogle Scholar
  132. 132.
    Santaniello, S., G. Fiengo, L. Glielmo, and W. M. Grill. Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 19:15–24, 2011.PubMedCrossRefGoogle Scholar
  133. 133.
    Schiff, S. J. Towards model-based control of Parkinson’s disease. Philos. Trans. A. Math. Phys. Eng. 368:2269–2308, 2010.CrossRefGoogle Scholar
  134. 134.
    Schmidt, R. A. Frequent augmented feedback can degrade learning: evidence and interpretations. Tutorials Motor Neurosci. 62:59–75, 1991.CrossRefGoogle Scholar
  135. 135.
    Serrano-Gotarredona, R., M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas, T. Delbruck, S.-C. Liu, R. Douglas, P. Haefliger, G. Jimenez-Moreno, A. Civit, T. Serrano-Gotarredona, A. Acosta-Jimenez, and B. Linares-Barranco. CAVIAR: a 45 k-neuron, 5 M-synapse, 12G connects/s AER hardware sensory-processing- learning-actuating system for high speed visual object recognition and tracking. IEEE Trans. Neural Netw. 20:1417–1438, 2009.PubMedCrossRefGoogle Scholar
  136. 136.
    Shpigelman, L., H. Lalazar, and E. Vaadia. Kernel-ARMA for hand tracking and brain-machine interfacing during 3D motor control. In: Proc. Neural Inf. Process. Syst., pp. 1489–1496, 2008.Google Scholar
  137. 137.
    Sigrist, R., G. Rauter, R. Riener, and P. Wolf. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon. Bull. Rev. 20:21–53, 2013.PubMedCrossRefGoogle Scholar
  138. 138.
    Snider, J., and M. Plank. Lee D, and H. Poizner. Simultaneous neural and movement recordings in large-scale immersive virtual environments. IEEE Trans. Biomed. Circuits Syst. 7:713–721, 2013.PubMedCrossRefGoogle Scholar
  139. 139.
    Snider, J., M. Plank, G. Lynch, E. Halgren, and H. Poizner. Human cortical θ during free exploration encodes space and predicts subsequent memory. J. Neurosci. 33:15056–15068, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Snijders, A. H., I. Toni, E. Ruzicka, and B. R. Bloem. Bicycling breaks the ice for freezers of gait. Mov. Disord. 26(3):367–371, 2011.PubMedCrossRefGoogle Scholar
  141. 141.
    Stanslaski, S., P. Afshar, P. Cong, J. Giftakis, P. Stypulkowski, D. Carlson, D. Linde, D. Ullestad, A. T. Avestruz, and T. Denison. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20:410–421, 2012.PubMedCrossRefGoogle Scholar
  142. 142.
    Stein, J. K., J. Narendran, and K. McBean. Krebs, and R. Hughes. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise and training after stroke. Am. J. Phys. Med. Rehabil. 86(4):255–261, 2007.PubMedCrossRefGoogle Scholar
  143. 143.
    Suminski, A. J., D. C. Tkach, A. H. Fagg, and N. G. Hatsopoulos. Incoporating feedback from multiple sensory modalities enhances brain–machine interface control. J. Neurosci. 30(50):16777–16787, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Suminski, A. J., D. C. Tkach, and N. G. Hatsopoulos. Exploiting multiple sensory modalities in brain–machine interfaces. Neural Netw. 22:1224–1234, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Sutton, R. S., and A. G. Barto. Reinforcement Learning: An introduction. Cambridge, MA: MIT Press, 1998.Google Scholar
  146. 146.
    Swann, N., H. Poizner, M. Houser, S. Gould, I. Greenhouse, W. Cai, J. Strunk, J. George, and A. R. Aron. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease. J. Neurosci. 31:5721–5729, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Taylor, D. M., S. I. Tillery, and A. B. Schwartz. Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832, 2002.PubMedCrossRefGoogle Scholar
  148. 148.
    Tefertiller, C., B. Pharo, N. Evans, and P. Winchester. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J. Rehabil. Res. Dev. 48(4):387–416, 2011.PubMedCrossRefGoogle Scholar
  149. 149.
    Thenganatt, M. A., and S. Fahn. Botulinum toxin for the treatment of movement disorders. Curr. Neurol. Neurosci. 12:399–409, 2012.CrossRefGoogle Scholar
  150. 150.
    Torres, E. B., K. M. Heilman, and H. Poizner. Impaired endogenously evoked automated reaching in Parkinson’s disease. J. Neurosci. 31:17848–17863, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Townsend, G., B. LaPallo, C. Boulay, D. Krusienski, G. Frye, C. Hauser, N. E. Schwartz, T. M. Vaughan, J. R. Wolpaw, and E. W. Sellers. A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin. Neurophysiol. 121:1109–1120, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Tubiana, R. Musician’s focal dystonia. Hand Clin. 19:303–308, 2003.PubMedCrossRefGoogle Scholar
  153. 153.
    Tunik, E., A. G. Feldman, and H. Poizner. Dopamine replacement therapy does not restore the ability of Parkinsonian patients to make rapid adjustments in motor strategies according to changing sensorimotor contexts. Parkinsonism Relat. Disord. 13:425–433, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Ustinova, K., L. Chernikova, A. Bilimenko, A. Telenkov, and N. Epstein. Effect of robotic locomotor training in an individual with Parkinson’s disease: a case report. Disabil. Rehabil. Assist. Technol. 6(1):77–85, 2011.PubMedCrossRefGoogle Scholar
  155. 155.
    Vogelstein, R. J., U. Mallik, E. Culurciello, G. Cauwenberghs, and R. Etienne-Cummings. A multi-chip neuromorphic system for spike-based visual information processing. Neural Comput. 19:2281–2300, 2007.PubMedCrossRefGoogle Scholar
  156. 156.
    Vogelstein, R. J., U. Mallik, J. T. Vogelstein, and G. Cauwenberghs. Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses. IEEE Trans. Neural Netw. 18:253–265, 2007.PubMedCrossRefGoogle Scholar
  157. 157.
    Wang, W., J. L. Collinger, M. A. Perez, E. C. Tyler-Kabara, L. G. Cohen, N. Birbaumer, S. W. Brosse, A. B. Schwartz, M. L. Boninger, and D. J. Weber. Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys. Med. Rehabil. Clin. N. Am. 21:157–178, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Westbrook, B. K., and H. McKibben. Dance/movement therapy with groups of outpatients with Parkinson’s disease. Am. J. Dance Ther. 11:27–38, 1989.CrossRefGoogle Scholar
  159. 159.
    Wolpaw, J. R., N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8:164–173, 2000.PubMedCrossRefGoogle Scholar
  160. 160.
    Worth, P. F. How to treat Parkinson’s disease in 2013. Clin. Med. 13:93–96, 2013.PubMedCrossRefGoogle Scholar
  161. 161.
    Wu, A. D., F. Fregni, D. K. Simon, C. Deblieck, and A. Pascual-Leone. Noninvasive brain stimulation for Parkinson’s disease and dystonia. Neurotherapeutics 5:345–361, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  162. 162.
    Yamamoto, T., Y. Katayama, J. Ushiba, H. Yoshino, T. Obuchi, K. Kobayashi, H. Oshima, and C. Fukaya. On-demand control system for deep brain stimulation for treatment of intention tremor. Neuromodulation 16:230–235, 2013.PubMedCrossRefGoogle Scholar
  163. 163.
    Yin, H. H., and B. J. Knowlton. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7:464–476, 2006.PubMedCrossRefGoogle Scholar
  164. 164.
    Zander, T. O., and C. Kothe. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8:025005, 2011.PubMedCrossRefGoogle Scholar
  165. 165.
    Zhou, S., X. Chen, C. Wang, C. Yin, P. Hu, and K. Wang. Selective attention deficits in early and moderate stage Parkinson’s disease. Neurosci. Lett. 509(1):50–55, 2012.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Frédéric D. Broccard
    • 1
    • 2
  • Tim Mullen
    • 3
  • Yu Mike Chi
    • 4
  • David Peterson
    • 1
    • 5
  • John R. Iversen
    • 3
  • Mike Arnold
    • 6
  • Kenneth Kreutz-Delgado
    • 3
  • Tzyy-Ping Jung
    • 3
  • Scott Makeig
    • 3
  • Howard Poizner
    • 1
  • Terrence Sejnowski
    • 1
    • 5
    • 7
  • Gert Cauwenberghs
    • 1
    • 2
  1. 1.Institute for Neural ComputationUniversity of California San DiegoLa JollaUSA
  2. 2.Department of BioengineeringUniversity of California San DiegoLa JollaUSA
  3. 3.Swartz Center for Computational NeuroscienceUniversity of California San DiegoLa JollaUSA
  4. 4.Cognionics Inc.San DiegoUSA
  5. 5.Computational Neuroscience LaboratorySalk Institute for Biological StudiesLa JollaUSA
  6. 6.Isoloader USA Inc.EncinitasUSA
  7. 7.Howard Hughes Medical InstituteLa JollaUSA

Personalised recommendations