Advertisement

Annals of Biomedical Engineering

, Volume 42, Issue 7, pp 1537–1545 | Cite as

From In Vitro to In Situ Tissue Engineering

  • Debanti Sengupta
  • Stephen D. Waldman
  • Song LiEmail author
Article

Abstract

In vitro tissue engineering enables the fabrication of functional tissues for tissue replacement. In addition, it allows us to build useful physiological and pathological models for mechanistic studies. However, the translation of in vitro tissue engineering into clinical therapies presents a number of technical and regulatory challenges. It is possible to circumvent the complexity of developing functional tissues in vitro by taking an in situ tissue engineering approach that uses the body as a native bioreactor to regenerate tissues. This approach harnesses the innate regenerative potential of the body and directs the appropriate cells to the site of injury. This review surveys the biomaterial-, cell-, and chemical factor-based strategies to engineer tissue in vitro and in situ.

Keywords

Biomaterials Insitu Invitro Tissue engineering Translational medicine 

Notes

Acknowledgments

This work is supported in part by a Siebel Postdoctoral Fellowship (to D.S.), a grant from the National Institute of Health (EB012240 to S.L.), and a grant from the California Institute of Regenerative Medicine (RB3-05232to S.L.).

References

  1. 1.
    Allaire, E., P. Bruneval, C. Mandet, J.-P. Becquemin, and J.-B. Michel. The immunogenicity of the extracellular matrix in arterial xenografts. Surgery 122:73–81, 1997.PubMedCrossRefGoogle Scholar
  2. 2.
    Atala, A., S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Babensee, J. E., J. M. Anderson, L. V. McIntire, and A. G. Mikos. Host response to tissue engineered devices. Adv. Drug Del. Rev. 33:111–139, 1998.CrossRefGoogle Scholar
  4. 4.
    Babensee, J. E., L. V. McIntire, and A. G. Mikos. Growth factor delivery for tissue engineering. Pharm. Res. 17:497–504, 2000.PubMedCrossRefGoogle Scholar
  5. 5.
    Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655–1665, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Beckstead, B. L., D. M. Santosa, and C. M. Giachelli. Mimicking cell–cell interactions at the biomaterial–cell interface for control of stem cell differentiation. J. Biomed. Mater. Res. A. 79:94–103, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Billingham, R., and J. Reynolds. Transplantation studies on sheets of pure epidermal epithelium and on epidermal cell suspensions. Br. J. Plast. Surg. 5:25–36, 1952.PubMedCrossRefGoogle Scholar
  8. 8.
    Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8:978–987, 2012.PubMedCrossRefGoogle Scholar
  9. 9.
    Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Burczak, K., E. Gamian, and A. Kochman. Long-term in vivo performance and biocompatibility of poly(vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas. Biomaterials 17:2351–2356, 1996.PubMedCrossRefGoogle Scholar
  11. 11.
    Cai, S., Y. Liu, X. Zheng Shu, and G. D. Prestwich. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067, 2005.PubMedCrossRefGoogle Scholar
  12. 12.
    Cao, H., K. Mchugh, S. Y. Chew, and J. M. Anderson. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J. Biomed. Mater. Res. Part A. 93:1151–1159, 2010.Google Scholar
  13. 13.
    Chen, X., A. S. Aledia, C. M. Ghajar, C. K. Griffith, A. J. Putnam, C. C. Hughes, and S. C. George. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A. 15:1363–1371, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Chen, L., Z. He, B. Chen, M. Yang, Y. Zhao, W. Sun, Z. Xiao, J. Zhang, and J. Dai. Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J. Mater. Sci. Mater. Med. 21:309–317, 2010.PubMedCrossRefGoogle Scholar
  15. 15.
    Chew, S. Y., J. Wen, E. K. Yim, and K. W. Leong. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017–2024, 2005.PubMedCrossRefGoogle Scholar
  16. 16.
    Christensen, L. H., V. B. Breiting, A. Aasted, A. Jørgensen, and I. Kebuladze. Long-term effects of polyacrylamide hydrogel on human breast tissue. Plast. Reconstr. Surg. 111:1883–1890, 2003.PubMedCrossRefGoogle Scholar
  17. 17.
    Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    DeForest, C. A., and K. S. Anseth. Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3:421–444, 2012.PubMedCrossRefGoogle Scholar
  19. 19.
    Elcin, Y. M., V. Dixit, and G. Gitnick. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif. Organs 25:558–565, 2001.PubMedCrossRefGoogle Scholar
  20. 20.
    Ellis, A. J., R. D. Hughes, J. A. Wendon, J. Dunne, P. G. Langley, J. H. Kelly, G. T. Gislason, N. L. Sussman, and R. Williams. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 24:1446–1451, 1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Engler, A. J., Berry M. F., Sweeney, H. L., Discher, D. In: Biomedical Engineering Society Annual Fall Meeting. Baltimore, MD, 2005.Google Scholar
  22. 22.
    Fischbach, C., and D. J. Mooney. Polymers for pro- and anti-angiogenic therapy. Biomaterials 28:2069–2076, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Habibovic, P., U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953, 2008.PubMedCrossRefGoogle Scholar
  24. 24.
    Henry, T. D., K. Rocha-Singh, J. M. Isner, D. J. Kereiakes, F. J. Giordano, M. Simons, D. W. Losordo, R. C. Hendel, R. O. Bonow, S. M. Eppler, T. F. Zioncheck, E. B. Holmgren, and E. R. McCluskey. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am. Heart J. 142:872–880, 2001.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoerstrup, S. P., R. Sodian, J. S. Sperling, J. P. Vacanti, and J. E. Mayer, Jr. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 6:75–79, 2000.PubMedCrossRefGoogle Scholar
  26. 26.
    Holmes, T. C. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol. 20:16–21, 2002.PubMedCrossRefGoogle Scholar
  27. 27.
    Huang, Q., J. Goh, D. Hutmacher, and E. H. Lee. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β 1 and the potential for in situ chondrogenesis. Tissue Eng. 8:469–482, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang, N. F., S. Patel, R. G. Thakar, J. Wu, B. S. Hsiao, B. Chu, R. J. Lee, and S. Li. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett. 6:537–542, 2006.PubMedCrossRefGoogle Scholar
  29. 29.
    Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328:1662–1668, 2010.PubMedCrossRefGoogle Scholar
  30. 30.
    Jackman, R. J., J. L. Wilbur, and G. M. Whitesides. Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269:664–666, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Karp, J. M., J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.-Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, and R. Langer. Controlling size, shape and homogeneity of embryoid bodies using poly (ethylene glycol) microwells. Lab Chip 7:786–794, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Kasimir, M., E. Rieder, G. Seebacher, A. Nigisch, B. Dekan, E. Wolner, G. Weigel, and P. Simon. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J. Heart Valve Dis. 15:278, 2006.PubMedGoogle Scholar
  33. 33.
    Khetan, S., and J. A. Burdick. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31:8228–8234, 2010.PubMedCrossRefGoogle Scholar
  34. 34.
    Khetan, S., M. Guvendiren, W. R. Legant, D. M. Cohen, C. S. Chen, and J. A. Burdick. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12:458–465, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kloxin, A. M., A. M. Kasko, C. N. Salinas, and K. S. Anseth. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kroon, E., L. A. Martinson, K. Kadoya, A. G. Bang, O. G. Kelly, S. Eliazer, H. Young, M. Richardson, N. G. Smart, and J. Cunningham. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26:443–452, 2008.PubMedCrossRefGoogle Scholar
  37. 37.
    Kurpinski, K., H. Lam, J. Chu, A. Wang, A. Kim, E. Tsay, S. Agrawal, D. V. Schaffer, and S. Li. Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742, 2010.PubMedCrossRefGoogle Scholar
  38. 38.
    Kurpinski, K. T., J. T. Stephenson, R. R. Janairo, H. Lee, and S. Li. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 31:3536–3542, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Law, B., R. Weissleder, and C.-H. Tung. Peptide-based biomaterials for protease-enhanced drug delivery. Biomacromolecules 7:1261–1265, 2006.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee, B. L.-P., H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li. Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater. 8:2648–2658, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    L’Heureux, N., N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12:361–365, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Li, W. J., C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60:613–621, 2002.PubMedCrossRefGoogle Scholar
  43. 43.
    Li, S., D. Sengupta, and S. Chien. Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip. Rev. Syst. Biol. Med. 6:61–76, 2014.PubMedCrossRefGoogle Scholar
  44. 44.
    Liang, D., B. S. Hsiao, and B. Chu. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 59:1392–1412, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Liau, B., N. Christoforou, K. W. Leong, and N. Bursac. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 32:9180–9187, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lim, F., and A. M. Sun. Microencapsulated islets as bioartificial endocrine pancreas. Science. 210:908–910, 1980.PubMedCrossRefGoogle Scholar
  47. 47.
    Liu, W., S. Thomopoulos, and Y. Xia. Electrospun nanofibers for regenerative medicine. Adv. Healthc. Mater. 1:10–25, 2012.PubMedCrossRefGoogle Scholar
  48. 48.
    Losordo, D. W., and S. Dimmeler. Therapeutic angiogenesis and vasculogenesis for ischemic disease part I: angiogenic cytokines. Circulation 109:2487–2491, 2004.PubMedCrossRefGoogle Scholar
  49. 49.
    Losordo, D. W., and S. Dimmeler. Therapeutic angiogenesis and vasculogenesis for ischemic disease Part II: cell-based therapies. Circulation 109:2692–2697, 2004.PubMedCrossRefGoogle Scholar
  50. 50.
    Lutolf, M., and J. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.PubMedCrossRefGoogle Scholar
  51. 51.
    Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. USA 107:15211–15216, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Mann, B. K., A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2001.PubMedCrossRefGoogle Scholar
  53. 53.
    Meinel, L., S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26:147–155, 2005.PubMedCrossRefGoogle Scholar
  54. 54.
    Mikos, A. G., A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti. Preparation and characterization of poly (l-lactic acid) foams. Polymer 35:1068–1077, 1994.CrossRefGoogle Scholar
  55. 55.
    Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D.-H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, and X. Yu. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Morishita, M., N. Kamei, J. Ehara, K. Isowa, and K. Takayama. A novel approach using functional peptides for efficient intestinal absorption of insulin. J. Control Releas. 118:177–184, 2007.CrossRefGoogle Scholar
  57. 57.
    Murphy, W. L., M. C. Peters, D. H. Kohn, and D. J. Mooney. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21:2521–2527, 2000.PubMedCrossRefGoogle Scholar
  58. 58.
    Nerem, R. M., and A. Sambanis. Tissue engineering: from biology to biological substitutes. Tissue Eng. 1:3–13, 1995.PubMedCrossRefGoogle Scholar
  59. 59.
    Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.PubMedCrossRefGoogle Scholar
  60. 60.
    Oberpenning, F., J. Meng, J. J. Yoo, and A. Atala. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17:149–155, 1999.PubMedCrossRefGoogle Scholar
  61. 61.
    Ott, H. C., B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, and J. P. Vacanti. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16:927–933, 2010.PubMedCrossRefGoogle Scholar
  62. 62.
    Ott, H. C., T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14:213–221, 2008.PubMedCrossRefGoogle Scholar
  63. 63.
    Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4:160rs164, 2012.CrossRefGoogle Scholar
  64. 64.
    Paul, N. E., C. Skazik, M. Harwardt, M. Bartneck, B. Denecke, D. Klee, J. Salber, and G. Zwadlo-Klarwasser. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 29:4056–4064, 2008.PubMedCrossRefGoogle Scholar
  65. 65.
    Phipps, M. C., W. C. Clem, J. M. Grunda, G. A. Clines, and S. L. Bellis. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33:524–534, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Radisic, M., H. Park, H. Shing, T. Consi, F. J. Schoen, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101:18129–18134, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Refai, A. K., M. Textor, D. M. Brunette, and J. D. Waterfield. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J. Biomed. Mater. Res. Part A. 70:194–205, 2004.CrossRefGoogle Scholar
  68. 68.
    Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.PubMedCrossRefGoogle Scholar
  69. 69.
    Ruan, M. Z., A. Erez, K. Guse, B. Dawson, T. Bertin, Y. Chen, M.-M. Jiang, J. Yustein, F. Gannon, and B. H. Lee. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci. Transl. Med. 5:176ra134, 2013.CrossRefGoogle Scholar
  70. 70.
    Schumacher, B., P. Pecher, B. U. von Specht, and T. Stegmann. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97:645–650, 1998.PubMedCrossRefGoogle Scholar
  71. 71.
    Seliktar, D., A. Zisch, M. Lutolf, J. Wrana, and J. Hubbell. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A. 68:704–716, 2004.PubMedCrossRefGoogle Scholar
  72. 72.
    Sengupta, D., P. M. Gilbert, K. J. Johnson, H. M. Blau, and S. C. Heilshorn. Protein-engineered biomaterials to generate human skeletal muscle mimics. Adv. Healthc. Mater. 1:785–789, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Stock, U. A., and K. Schenke-Layland. Performance of decellularized xenogeneic tissue in heart valve replacement. Biomaterials 27:1–2, 2006.PubMedCrossRefGoogle Scholar
  74. 74.
    Straley, K. S., and S. C. Heilshorn. Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21:4148–4152, 2009.CrossRefGoogle Scholar
  75. 75.
    Sussman, E. M., M. C. Halpin, J. Muster, R. T. Moon, and B. D. Ratner. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 2013. doi: 10.1007/s10439-013-0933-0.
  76. 76.
    Tabata, Y., and Y. Ikada. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20:2169–2175, 1999.PubMedCrossRefGoogle Scholar
  77. 77.
    Telemeco, T., C. Ayres, G. Bowlin, G. Wnek, E. Boland, N. Cohen, C. Baumgarten, J. Mathews, and D. Simpson. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater. 1:377–385, 2005.PubMedCrossRefGoogle Scholar
  78. 78.
    Uygun, B. E., A. Soto-Gutierrez, H. Yagi, M.-L. Izamis, M. A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, and F. Berthiaume. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16:814–820, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Vozzi, G., C. Flaim, A. Ahluwalia, and S. Bhatia. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540, 2003.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang, D.-A., S. Varghese, B. Sharma, I. Strehin, S. Fermanian, J. Gorham, D. H. Fairbrother, B. Cascio, and J. H. Elisseeff. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat. Mater. 6:385–392, 2007.PubMedCrossRefGoogle Scholar
  81. 81.
    Williams, D. F. On the nature of biomaterials. Biomaterials 30:5897–5909, 2009.PubMedCrossRefGoogle Scholar
  82. 82.
    Yannas, J. B. I., W. Quinby, Jr., C. Bondoc, and W. Jung. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194:413, 1981.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Zisch, A. H., M. P. Lutolf, and J. A. Hubbell. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 12:295–310, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Debanti Sengupta
    • 1
  • Stephen D. Waldman
    • 2
  • Song Li
    • 1
    Email author
  1. 1.Department of BioengineeringUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Department of Chemical Engineering, Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations