Annals of Biomedical Engineering

, Volume 42, Issue 6, pp 1195–1206 | Cite as

An In Vitro Evaluation of the Impact of Eccentric Deployment on Transcatheter Aortic Valve Hemodynamics

  • Paul S. Gunning
  • Neelakantan Saikrishnan
  • Laoise M. McNamara
  • Ajit P. Yoganathan


Patients with aortic stenosis present with calcium deposits on the native aortic valve, which can result in non-concentric expansion of Transcatheter Aortic Valve Replacement (TAVR) stents. The objective of this study is to evaluate whether eccentric deployment of TAVRs lead to turbulent blood flow and blood cell damage. Particle Image Velocimetry was used to quantitatively characterize fluid velocity fields, shear stress and turbulent kinetic energy downstream of TAVRs deployed in circular and eccentric orifices representative of deployed TAVRs in vivo. Effective orifice area (EOA) and mean transvalvular pressure gradient (TVG) values did not differ substantially in circular and eccentric deployed valves, with only a minor decrease in EOA observed in the eccentric valve (2.0 cm2 for circular, 1.9 cm2 for eccentric). Eccentric deployed TAVR lead to asymmetric systolic jet formation, with increased shear stresses (circular = 97 N/m2 vs. eccentric = 119 N/m2) and regions of turbulence intensity (circular = 180 N/m2 vs. eccentric = 230 N/m2) downstream that was not present in the circular deployed TAVR. The results of this study indicate that eccentric deployment of TAVRs can lead to altered flow characteristics and may potentially increase the hemolytic potential of the valve, which were not captured through hemodynamic evaluation alone.


Transcatheter aortic valve implantation Hemodynamics Shear stress Particle Image Velocimetry Eccentric 



The authors would like to acknowledge the assistance from the Georgia Tech Research Institute (GTRI) machine shop for manufacturing the acrylic models used in the study. This study was funded by the Science Foundation Ireland Short Term Travel Fellowship Award, a National University of Ireland Galway (NUI Galway) College of Engineering and Informatics Fellowship and the Wallace H. Coulter endowment fund to A. P. Yoganathan.

Conflict of interest



  1. 1.
    Bellofiore, A., E. Donohue, and N. Quinlan. Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve. Exp. Fluids 51:161–176, 2011.CrossRefGoogle Scholar
  2. 2.
    Bellofiore, A., and N. Quinlan. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann. Biomed. Eng. 39:2417–2429, 2011.PubMedCrossRefGoogle Scholar
  3. 3.
    Blackshear, P. L. Hemolysis at Prosthetic Surfaces. In: Chemistry of Biosurfaces, edited by M. L. Hair. New York: Marcel Dekkar, 1972, pp. 523–562.Google Scholar
  4. 4.
    Blanke, P., M. Russe, J. Leipsic, J. Reinöhl, U. Ebersberger, P. Suranyi, M. Siepe, G. Pache, M. Langer, and U. J. Schoepf. Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. J. Am. Coll. Cardio. Interv. 5:984–994, 2012.CrossRefGoogle Scholar
  5. 5.
    Cardiovascular Implants—Cardiac Valve Prostheses ISO 5840. ISO, Geneva, Switzerland, 2005.Google Scholar
  6. 6.
    Cavero, M. A., J. Goicolea, C. García-Montero, and J. F. Oteo. Prognostic implications of asymmetric morphology in transcatheter aortic valve implantation: a case report. Rev. Esp. Cardiol. 65:104–105, 2012.PubMedCrossRefGoogle Scholar
  7. 7.
    Cecelja, M., and P. Chowienczyk. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc. Dis. 1:1–11, 2012.CrossRefGoogle Scholar
  8. 8.
    Clavel, M.-A., J. G. Webb, P. Pibarot, L. Altwegg, E. Dumont, C. Thompson, R. De Larochellière, D. Doyle, J.-B. Masson, S. Bergeron, O. F. Bertrand, and J. Rodés-Cabau. Comparison of the hemodynamic performance of percutaneous and surgical bioprostheses for the treatment of severe aortic stenosis. J. Am. Coll. Cardiol. 53:1883–1891, 2009.PubMedCrossRefGoogle Scholar
  9. 9.
    Connolly, H. M., J. K. Oh, T. A. Orszulak, S. L. Osborn, V. L. Roger, D. O. Hodge, K. R. Bailey, J. B. Seward, and A. J. Tajik. Aortic valve replacement for aortic stenosis with severe left ventricular dysfunction: prognostic indicators. Circulation 95:2395–2400, 1997.PubMedCrossRefGoogle Scholar
  10. 10.
    Cooper, B. T., B. N. Roszelle, T. C. Long, S. Deutsch, and K. B. Manning. The 12cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection. J. Biomech. Eng. 130:041019, 2008.PubMedCrossRefGoogle Scholar
  11. 11.
    Cribier, A., H. Eltchaninoff, C. Tron, F. Bauer, C. Agatiello, D. Nercolini, S. Tapiero, P.-Y. Litzler, J.-P. Bessou, and V. Babaliaros. Treatment of calcific aortic stenosis with the percutaneous heart valve: mid-term follow-up from the initial feasibility studies: the French experience. J. Am. Coll. Cardiol. 47:1214–1223, 2006.PubMedCrossRefGoogle Scholar
  12. 12.
    Cribier, A., H. Eltchaninoff, C. Tron, F. Bauer, C. Agatiello, L. Sebagh, A. Bash, D. Nusimovici, P. Y. Litzler, J.-P. Bessou, and M. B. Leon. Early experience with percutaneous transcatheter implantation of heart valve prosthesis for the treatment of end-stage inoperable patients with calcific aortic stenosis. J. Am. Coll. Cardiol. 43:698–703, 2004.PubMedCrossRefGoogle Scholar
  13. 13.
    D’Errigo, P., M. Barbanti, M. Ranucci, F. Onorati, R. D. Covello, S. Rosato, C. Tamburino, F. Santini, G. Santoro, and F. Seccareccia. Transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis: results from an intermediate risk propensity-matched population of the Italian OBSERVANT study. Int. J. Cardiol. 167:1945–1952, 2013.PubMedCrossRefGoogle Scholar
  14. 14.
    Ducci A., S. Tzamtzis, M. J. Mullen, and G. Burriesci. Phase-resolved velocity measurements in the Valsalva sinus downstream of a Transcatheter Aortic Valve. In: 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 9–12 July 2012.Google Scholar
  15. 15.
    Ge, L., L. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs viscous stresses. Ann. Biomed. Eng. 36:276–297, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Goubergrits, L. Numerical modeling of blood damage: current status, challenges and future prospects. Expert Rev. Med. Devices 3:527–531, 2006.PubMedCrossRefGoogle Scholar
  17. 17.
    Goubergrits, L., and K. Affeld. Numerical estimation of blood damage in artificial organs. Artif. Organs 28:499–507, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Grigioni, M., U. Morbiducci, G. D’Avenio, G. Benedetto, and C. Gaudio. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model. Mechanobiol. 4:249–260, 2005.PubMedCrossRefGoogle Scholar
  19. 19.
    Gross, J. M., M. C. Shu, F. F. Dai, J. Ellis, and A. P. Yoganathan. A microstructural flow analysis within a bileaflet mechanical heart valve hinge. J. Heart Valve Dis. 5:581–590, 1996.PubMedGoogle Scholar
  20. 20.
    Hamdan, A., V. Guetta, E. Konen, O. Goitein, A. Segev, E. Raanani, D. Spiegelstein, I. Hay, E. Di Segni, M. Eldar, and E. Schwammenthal. Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J. Am. Coll. Cardiol. 59:119–127, 2012.PubMedCrossRefGoogle Scholar
  21. 21.
    Hellums, J. D., and C. H. Brown. Blood cell damage by mechanical forces. In: Cardiovascular Flow Dynamics and Measurements, edited by N. H. C. Hwang, and N. A. Normann. Baltimore: University Park Press, 1977, pp. 799–823.Google Scholar
  22. 22.
    Keane, R. D., and R. J. Adrian. Optimization of particle image velocimeters. I. Double pulsed systems. Meas. Sci. Technol. 1:1202, 1990.CrossRefGoogle Scholar
  23. 23.
    Knight, J., V. Kurtcuoglu, K. Muffly, W. Marshall, Jr., P. Stolzmann, L. Desbiolles, B. Seifert, D. Poulikakos, and H. Alkadhi. Ex vivo and in vivo coronary ostial locations in humans. Surg. Radiol. Anat. 31:597–604, 2009.PubMedCrossRefGoogle Scholar
  24. 24.
    Koos, R., A. H. Mahnken, G. Dohmen, K. Brehmer, R. W. Günther, R. Autschbach, N. Marx, and R. Hoffmann. Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation. Int. J. Cardiol. 150:142–145, 2011.PubMedCrossRefGoogle Scholar
  25. 25.
    Koppensteiner, R., A. Moritz, W. Schlick, G. Fenzl, S. Roedler, H. Ehringer, and E. Wollner. Blood rheology after cardiac valve replacement with mechanical prostheses or bioprostheses. J. Am. Coll. Cardiol. 67:79–83, 1991.CrossRefGoogle Scholar
  26. 26.
    Leo, H., L. P. Dasi, J. Carberry, H. A. Simon, and A. P. Yoganathan. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34:936–952, 2006.PubMedCrossRefGoogle Scholar
  27. 27.
    Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J . 12:257–273, 1972.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lim, W. L., Y. T. Chew, T. C. Chew, and H. T. Low. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34:1417–1427, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Markl, M., I. Mikati, J. Carr, P. McCarthy, and S. C. Malaisrie. Three-dimensional blood flow alterations after transcatheter aortic valve implantation. Circulation 125:573–575, 2012.CrossRefGoogle Scholar
  30. 30.
    Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54:64–72, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Padala, M., E. Sarin, P. Willis, V. Babaliaros, P. Block, R. Guyton, and V. Thourani. An engineering review of transcatheter aortic valve technologies. Cardiovasc. Eng. Technol. 1:77–87, 2010.CrossRefGoogle Scholar
  32. 32.
    Pisani, G., R. Scaffa, O. Ieropoli, E. M. Dell’Amico, D. Maselli, U. Morbiducci, and R. De Paulis. Role of the sinuses of Valsalva on the opening of the aortic valve. J. Thoracic Cardiovasc. Surg. 145:999–1003, 2013.CrossRefGoogle Scholar
  33. 33.
    Raffel, M., C. E. Willer, S. T. Wereley, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide. Berlin: Springer, 2007.Google Scholar
  34. 34.
    Reul, H., A. Vahlbruch, M. Giersiepen, T. Schmitz-Rode, V. Hirtz, and S. Effert. The geometry of the aortic root in health, at valve disease and after valve replacement. J. Biomech. 23:181–191, 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Rodes-Cabau, J. Transcatheter aortic valve implantation: current and future approaches. Nat. Rev. Cardiol. 9:15–29, 2012.CrossRefGoogle Scholar
  36. 36.
    Saikrishnan, N., S. Gupta, and A. P. Yoganathan. Hemodynamics of the Boston Scientific Lotus™ valve: an in vitro study. Cardiovasc. Eng. Technol. 4(4):427–439, 2013.CrossRefGoogle Scholar
  37. 37.
    Saikrishnan, N., C.-H. Yap, N. Milligan, N. Vasilyev, and A. P. Yoganathan. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40:1760–1775, 2012.PubMedCrossRefGoogle Scholar
  38. 38.
    Saikrishnan, N., and A. Yoganathan. Transcatheter valve implantation can alter the fluid flow fields in the aortic sinuses and ascending aorta: an in vitro study. J. Am. Coll. Cardiol. 61, 2013. doi: 10.1016/S0735-1097(13)61969-5.
  39. 39.
    Sallam, A. M., and N. H. C. Hwang. Human red blood cells in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797, 1984.PubMedGoogle Scholar
  40. 40.
    Schultz, C. J., A. Weustink, N. Piazza, A. Otten, N. Mollet, G. Krestin, R. J. van Geuns, P. de Feyter, P. W. J. Serruys, and P. de Jaegere. Geometry and degree of apposition of the corevalve revalving system with multislice computed tomography after implantation in patients with aortic stenosis. J. Am. Coll. Cardiol. 54:911–918, 2009.PubMedCrossRefGoogle Scholar
  41. 41.
    Shapiro, S. I., and M. C. Williams. Hemolysis in simple shear flows. AIChE J. 16:575–580, 1970.CrossRefGoogle Scholar
  42. 42.
    Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sirois, E., and W. Sun. Computational evaluation of platelet activation induced by a bioprosthetic heart valve. Artif. Organs 35:157–165, 2011.PubMedGoogle Scholar
  44. 44.
    Spethmann, S., H. Dreger, S. Schattke, G. Baldenhofer, D. Saghabalyan, V. Stangl, M. Laule, G. Baumann, K. Stangl, and F. Knebel. Doppler haemodynamics and effective orifice areas of Edwards SAPIEN and CoreValve transcatheter aortic valves. Eur. Heart. J. Cardiovasc. Imaging. 13:690–696, 2012.PubMedCrossRefGoogle Scholar
  45. 45.
    Stühle, S., D. Wendt, G. Houl, H. Wendt, M. Schlamann, M. Thielmann, H. Jakob, and W. Kowalczyk. In-vitro investigation of the hemodynamics of the Edwards Sapien transcatheter heart valve. J. Heart Valve Dis. 20:53–63, 2011.PubMedGoogle Scholar
  46. 46.
    Tzamtzis, S., J. Viquerat, J. Yap, M. J. Mullen, and G. Burriesci. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35(1):125–130, 2013.PubMedCrossRefGoogle Scholar
  47. 47.
    Walther, T., and V. Falk. Hemodynamic evaluation of heart valve prostheses: paradigm shift for transcatheter valves? J. Am. Coll. Cardiol. 53:1892–1893, 2009.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang, X., and X. Li. The influence of wall compliance on flow pattern in a curved artery exposed to a dynamic physiological environment: an elastic wall model versus a rigid wall model. J. Mech. Med. Biol. 12:1250079, 2012.CrossRefGoogle Scholar
  49. 49.
    Webb, J. G., and D. A. Wood. Current status of transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 60:483–492, 2012.PubMedCrossRefGoogle Scholar
  50. 50.
    Wong, D. T. L., A. G. Bertaso, G. Y. H. Liew, V. S. Thomson, M. S. Cunnington, J. D. Richardson, R. Gooley, S. Lockwood, I. T. Meredith, M. I. Worthley, and S. G. Worthley. Relationship of aortic annular eccentricity and paravalvular regurgitation post transcatheter aortic valve implantation with core valve. J. Invasive Cardiol. 25:190–195, 2013.PubMedGoogle Scholar
  51. 51.
    Yap, C. H., H.-S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am. J. Physiol. Heart Circ. Physiol. 298:H395–H405, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Yoganathan, A. P., K. B. Chandran, and F. Sotiropoulos. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann. Biomed. Eng. 33:1689–1694, 2005.PubMedCrossRefGoogle Scholar
  53. 53.
    Young, E., J.-F. Chen, O. Dong, S. Gao, A. Massiello, and K. Fukamachi. Transcatheter heart valve with variable geometric configuration: in vitro evaluation. Artif. Organs 35:1151–1159, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Paul S. Gunning
    • 1
  • Neelakantan Saikrishnan
    • 2
  • Laoise M. McNamara
    • 1
  • Ajit P. Yoganathan
    • 2
  1. 1.Biomechanics Research Centre, Department of Biomedical EngineeringNational University of Ireland GalwayGalwayIreland
  2. 2.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA

Personalised recommendations