Annals of Biomedical Engineering

, Volume 42, Issue 6, pp 1185–1194 | Cite as

Pro-Atherogenic Shear Stress and HIV Proteins Synergistically Upregulate Cathepsin K in Endothelial Cells

  • Ivana Kennedy Parker
  • Ladeidra Monet Roberts
  • Laura Hansen
  • Rudolph L. GleasonJr.
  • Roy L. Sutliff
  • Manu O. Platt
Article

Abstract

Major advances in highly active antiretroviral therapies (HAART) have extended the lives of people living with HIV, but there still remains an increased risk of death by cardiovascular diseases (CVD). HIV proteins have been shown to contribute to cardiovascular dysfunction with effects on the different cell types that comprise the arterial wall. In particular, HIV-1 transactivating factor (Tat) has been shown to bind to endothelial cells inducing a range of responses that contribute to vascular dysfunction. It is well established that hemodynamics also play an important role in endothelial cell mediated atherosclerotic development. When exposed to low or oscillatory shear stress, such as that found at branches and bifurcations, endothelial cells contribute to proteolytic vascular remodeling by upregulating cathepsins, potent elastases and collagenases that contribute to altered biomechanics and plaque formation. Mechanisms to understand the influence of Tat on shear stress mediated vascular remodeling have not been fully elucidated. Using an in vivo HIV-Tg mouse model and an in vitro cone and plate shear stress bioreactor to actuate physiologically relevant pro-atherogenic or atheroprotective shear stress on human aortic endothelial cells, we have shown synergism between HIV proteins and pro-atherogenic shear stress to increase endothelial cell expression of the powerful protease cathepsin K, and may implicate this protease in accelerated CVD in people living with HIV.

Keywords

Cathepsin HIV Tat Arterial remodeling Shear stress Endothelial cells 

Notes

Acknowledgments

This work was completed partially with funding from a Creative and Novel Ideas in HIV Research (CNIHR) grant sponsored by the National Institutes of Health CFAR programme and the International AIDS Society (MOP, RLS, and RLG), NIH Award Number DP2OD007433 from the Office of the Director, National Institutes of Health (MOP), and National Science Foundation Graduate Research Fellowships (IKP and LMH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Office of the Director, National Institutes of Health or the National Institutes of Health.

References

  1. 1.
    Antonov, A. S., et al. Prothrombotic phenotype diversity of human aortic endothelial cells in culture. Thromb. Res. 67(2):135–145, 1992.PubMedCrossRefGoogle Scholar
  2. 2.
    Bonnet, D., et al. Arterial stiffness and endothelial dysfunction in HIV-infected children. AIDS 18(7):1037–1041, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Bromme, D., et al. Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38(8):2377–2385, 1999.PubMedCrossRefGoogle Scholar
  4. 4.
    Chiodelli, P., et al. Sialic acid associated with alphavbeta3 integrin mediates HIV-1 Tat protein interaction and endothelial cell proangiogenic activation. J. Biol. Chem. 287(24):20456–20466, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Chironi, G., et al. Brief report: carotid intima-media thickness in heavily pretreated HIV-infected patients. J. Acquir. Immune Defic. Syndr. 32(5):490–493, 2003.PubMedCrossRefGoogle Scholar
  6. 6.
    Cota-Gomez, A., et al. The human immunodeficiency virus-1 Tat protein activates human umbilical vein endothelial cell E-selectin expression via an NF-kappa B-dependent mechanism. J. Biol. Chem. 277(17):14390–14399, 2002.PubMedGoogle Scholar
  7. 7.
    Currier, J. S., et al. Carotid artery intima-media thickness and HIV infection: traditional risk factors overshadow impact of protease inhibitor exposure. AIDS 19(9):927–933, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Dai, G., et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. U.S.A. 101(41):14871–14876, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    El-Sadr, W. M., et al. CD4+ count-guided interruption of antiretroviral treatment. N. Engl. J. Med. 355(22):2283–2296, 2006.PubMedCrossRefGoogle Scholar
  10. 10.
    Ensoli, B., et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67(1):277–287, 1993.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Galis, Z. S., et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Investig. 94(6):2493–2503, 1994.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hansen, L., et al. Azidothymidine (AZT) leads to arterial stiffening and intima-media thickening in mice. J. Biomech. 46(9):1540–1547, 2013.PubMedCrossRefGoogle Scholar
  13. 13.
    Hansen, L., et al. Endothelial dysfunction, arterial stiffening, and intima-media thickening in large arteries from HIV-1 transgenic mice. Ann. Biomed. Eng. 41(4):682–693, 2013.PubMedCrossRefGoogle Scholar
  14. 14.
    Hofman, F. M., et al. Exogenous tat protein activates human endothelial cells. Blood 82(9):2774–2780, 1993.PubMedGoogle Scholar
  15. 15.
    Hsue, P. Y., et al. Role of viral replication, antiretroviral therapy, and immunodeficiency in HIV-associated atherosclerosis. AIDS 23(9):1059–1067, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kline, E. R., and R. L. Sutliff. The roles of HIV-1 proteins and antiretroviral drug therapy in HIV-1-associated endothelial dysfunction. J. Investig. Med. 56(5):752–769, 2008.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Kopp, J. B., et al. Progressive glomerulosclerosis and enhanced renal accumulation of basement-membrane components in mice transgenic for human-immunodeficiency-virus type-1 genes. Proc. Natl Acad. Sci. U.S.A. 89(5):1577–1581, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.CrossRefGoogle Scholar
  19. 19.
    Li, W. A., et al. Detection of femtomole quantities of mature cathepsin K with zymography. Anal. Biochem. 401(1):91–98, 2010.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, K., et al. HIV-1 Tat protein-induced VCAM-1 expression in human pulmonary artery endothelial cells and its signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(2):L252–L260, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu, J., et al. Increased serum cathepsin S in patients with atherosclerosis and diabetes. Atherosclerosis 186(2):411–419, 2006.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu, J., et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184(2):302–311, 2006.PubMedCrossRefGoogle Scholar
  23. 23.
    Lutgens, E., et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113(1):98–107, 2006.PubMedGoogle Scholar
  24. 24.
    McComsey, G. A., et al. Increased carotid intima media thickness and cardiac biomarkers in HIV infected children. AIDS 21(8):921–927, 2007.PubMedCrossRefGoogle Scholar
  25. 25.
    Meng, Q., et al. Coronary artery calcification, atherogenic lipid changes, and increased erythrocyte volume in black injection drug users infected with human immunodeficiency virus-1 treated with protease inhibitors. Am. Heart J. 144(4):642–648, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Moore, Jr, J. E., et al. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J. Biomech. Eng. 114(3):391–397, 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Moore, Jr, J. E., et al. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J. Appl Physiol. 76(4):1520–1527, 1994.PubMedGoogle Scholar
  28. 28.
    Platt, M. O., R. F. Ankeny, and H. Jo. Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26(8):1784–1790, 2006.PubMedCrossRefGoogle Scholar
  29. 29.
    Platt, M. O., R. F. Ankeny, and H. Jo. Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26(8):1784–1790, 2006.PubMedCrossRefGoogle Scholar
  30. 30.
    Platt, M. O., et al. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 292(3):H1479–H1486, 2007.PubMedCrossRefGoogle Scholar
  31. 31.
    Platt, M. O., et al. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 292(3):H1479–H1486, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Reiser, J., B. Adair, and T. Reinheckel. Specialized roles for cysteine cathepsins in health and disease. J. Clin. Investig. 120(10):3421–3431, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Rusnati, M., and M. Presta. HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5(3):141–151, 2002.PubMedCrossRefGoogle Scholar
  34. 34.
    Sevastianova, K., et al. Arterial stiffness in HIV-infected patients receiving highly active antiretroviral therapy. Antivir. Ther. 10(8):925–935, 2005.PubMedGoogle Scholar
  35. 35.
    Spieker, L. E., et al. Rapid progression of atherosclerotic coronary artery disease in patients with human immunodeficiency virus infection. Heart Vessels 20(4):171–174, 2005.PubMedCrossRefGoogle Scholar
  36. 36.
    Sukhova, G. K., G. P. Shi, D. I. Simon, H. A. Chapman, and P. Libby. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Investig. 102:576–583, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sukhova, G. K., et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J. Clin. Investig. 111(6):897–906, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Suo, J., et al. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27(2):346–351, 2007.PubMedCrossRefGoogle Scholar
  39. 39.
    Urbinati, C., et al. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol. 25(11):2315–2320, 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Urbinati, C., et al. Substrate-immobilized HIV-1 Tat drives VEGFR2/alpha(v)beta(3)-integrin complex formation and polarization in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 32(5):e25–e34, 2012.PubMedCrossRefGoogle Scholar
  41. 41.
    van Vonderen, M. G., et al. Carotid intima-media thickness and arterial stiffness in HIV-infected patients: the role of HIV, antiretroviral therapy, and lipodystrophy. J. Acquir. Immune Defic. Syndr. 50(2):153–161, 2009.PubMedCrossRefGoogle Scholar
  42. 42.
    Wilder, C. L., et al. Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Arch. Biochem. Biophys. 516(1):52–57, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Yasuda, Y., et al. Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J. Biol. Chem. 279(35):36761–36770, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Ivana Kennedy Parker
    • 1
    • 4
  • Ladeidra Monet Roberts
    • 2
  • Laura Hansen
    • 2
    • 4
  • Rudolph L. GleasonJr.
    • 1
    • 2
    • 4
  • Roy L. Sutliff
    • 3
  • Manu O. Platt
    • 2
    • 4
  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department MedicineEmory University/Atlanta VAMCAtlantaUSA
  4. 4.Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations