Annals of Biomedical Engineering

, Volume 42, Issue 8, pp 1740–1748 | Cite as

Hydration Dependent Viscoelastic Tensile Behavior of Cornea

Article

Abstract

The cornea is a protective transparent connective tissue covering the front of the eye. The standard uniaxial tensile experiments are among the most popular techniques for investigating biomechanical properties of the cornea. This experimental method characterizes the stress–strain response of corneal strips immersed in a bathing solution. In the present study, the important roles of corneal hydration on tensile viscoelastic properties were investigated. The thickness was used as a surrogate for hydration and uniaxial tensile experiments were performed on bovine corneal samples with four different average thickness (hydration), i.e., 1100 μm (4.87 mg water/mg dry tissue), 900 μm (4.13 mg water/mg dry tissue), 700 μm (3.20 mg water/mg dry tissue), and 500 μm (1.95 mg water/mg dry tissue). The samples were immersed in mineral oil in order to prevent their swelling during the experiments. A quasilinear viscoelastic (QLV) model was used to analyze the experimental measurements and determine viscoelastic material constants. It was observed that both maximum and equilibrium (relaxed) stresses were exponentially increased with decreasing tissue thickness (hydration). Furthermore, the QLV model successfully captured the corneal viscoelastic response with an average R2 value greater than 0.99. Additional experiments were conducted in OBSS in order to confirm that these significant changes in viscoelastic properties were because of corneal hydration and not the bathing solution. The findings of this study suggest that extra care must be taken in interpreting the results of earlier uniaxial tensile testings and their correspondence to the corneal biomechanical properties.

Keywords

Tensile stress-relaxation experiments Mechanical behavior Viscoelasticity Bovine cornea 

References

  1. 1.
    Abramowitch, S. D., and S. L. Woo. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J. Biomech. Eng. 126:92–97, 2004.PubMedCrossRefGoogle Scholar
  2. 2.
    Abramowitch, S. D., S. L. Woo, T. D. Clineff, and R. E. Debski. An evaluation of the quasi-linear viscoelastic properties of the healing medial collateral ligament in a goat model. Ann. Biomed. Eng. 32:329–335, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson, K., A. El-Sheikh, and T. Newson. Application of structural analysis to the mechanical behaviour of the cornea. J. R. Soc. Lond. Interface 1:3–15, 2004.CrossRefGoogle Scholar
  4. 4.
    Boschetti, F., V. Triacca, L. Spinelli, and A. Pandolfi. Mechanical characterization of porcine corneas. J. Biomech. Eng. 134:031003–031009, 2012.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyce, B. L., J. M. Grazier, R. E. Jones, and T. D. Nguyen. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 29:3896–3904, 2008.PubMedCrossRefGoogle Scholar
  6. 6.
    Boyce, B. L., R. E. Jones, T. D. Nguyen, and J. M. Grazier. Stress-controlled viscoelastic tensile response of bovine cornea. J. Biomech. 40:2367–2376, 2007.PubMedCrossRefGoogle Scholar
  7. 7.
    Carew, E. O., A. Garg, J. E. Barber, and I. Vesely. Stress relaxation preconditioning of porcine aortic valves. Ann. Biomed. Eng. 32:563–572, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng, X., H. Hatami-Marbini, and P. M. Pinsky. Modeling collagen-proteoglycan structural interactions in the human cornea. In: Computer Models in Biomechanics, edited by G. A. Holzapfel, and E. Kuhl. Heidelberg: Springer, 2013, pp. 11–24.CrossRefGoogle Scholar
  9. 9.
    Doehring, T. C., E. O. Carew, and I. Vesely. The effect of strain rate on the viscoelastic response of aortic valve tissue: a direct-fit approach. Ann. Biomed. Eng. 32:223–232, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Elsheikh, A., and D. Alhasso. Mechanical anisotropy of porcine cornea and correlation with stromal microstructure. Exp. Eye Res. 88:1084–1091, 2009.PubMedCrossRefGoogle Scholar
  11. 11.
    Elsheikh, A., D. Alhasso, and P. Rama. Biomechanical properties of human and porcine corneas. Exp. Eye Res. 86:783–790, 2008.PubMedCrossRefGoogle Scholar
  12. 12.
    Elsheikh, A., and K. Anderson. Comparative study of corneal strip extensometry and inflation tests. Journal of The Royal Society Interface 2:177–185, 2005.PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Elsheikh, A., M. Brown, D. Alhasso, P. Rama, M. Campanelli, and D. Garway-Heath. Experimental assessment of corneal anisotropy. J. Refract. Surg. 24:178–187, 2008.PubMedGoogle Scholar
  14. 14.
    Elsheikh, A., W. Kassem, and S. W. Jones. Strain-rate sensitivity of porcine and ovine corneas. Acta Bioeng. Biomech. 13:25–36, 2011.PubMedGoogle Scholar
  15. 15.
    Elsheikh, A., D. Wang, and D. Pye. Determination of the modulus of elasticity of the human cornea. J. Refract. Surg. 23:808–818, 2007.PubMedGoogle Scholar
  16. 16.
    Fricke, T. R., B. A. Holden, D. A. Wilson, et al. Global cost of correcting vision impairment from uncorrected refractive error. Bull. World Health Organ. 90:728–738, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer, 1993.CrossRefGoogle Scholar
  18. 18.
    Han, L., D. Dean, L. A. Daher, A. J. Grodzinsky, and C. Ortiz. Cartilage aggrecan can undergo self-adhesion. Biophys. J. 95:4862–4870, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hatami-Marbini, H., and E. Etebu. An experimental and theoretical analysis of unconfined compression of corneal stroma. J. Biomech. 46:1752–1758, 2013.PubMedCrossRefGoogle Scholar
  20. 20.
    Hatami-Marbini, H., and E. Etebu. Hydration dependent biomechanical properties of the corneal stroma. Exp. Eye Res. 116:47–54, 2013.PubMedCrossRefGoogle Scholar
  21. 21.
    Hatami-Marbini, H., and E. Etebu. A New Method to Determine Rate-dependent Material Parameters of Corneal Extracellular Matrix. Ann. Biomed. Eng. 41:2399–2408, 2013.PubMedCrossRefGoogle Scholar
  22. 22.
    Hatami-Marbini, H., E. Etebu, and A. Rahimi. Swelling Pressure and Hydration Behavior of Porcine Corneal Stroma. Curr. Eye Res. 38:1124–1132, 2013.PubMedCrossRefGoogle Scholar
  23. 23.
    Hatami-Marbini, H., and P. M. Pinsky. On mechanics of connective tissue: assessing the electrostatic contribution to corneal stroma elasticity. In: Material Research Society Proceedings, Boston, 2009, p. 1239.Google Scholar
  24. 24.
    Hatami-Marbini, H., and A. Rahimi. Effects of bathing solution on tensile properties of the cornea. Exp. Eye Res. 120:103–108, 2014.PubMedCrossRefGoogle Scholar
  25. 25.
    Hedbys, B. O., and C. H. Dohlman. A new method for the determination of the swelling pressure of the corneal stroma in vitro. Exp. Eye Res. 2:122–129, 1963.PubMedCrossRefGoogle Scholar
  26. 26.
    Hedbys, B. O., and S. Mishima. The thickness-hydration relationship of the cornea. Exp. Eye Res. 5:221–228, 1966.PubMedCrossRefGoogle Scholar
  27. 27.
    Hodson, S. Why the cornea Swells. J. Theor. Biol. 33:419–427, 1971.PubMedCrossRefGoogle Scholar
  28. 28.
    Hodson, S. A. Corneal stromal swelling. Prog. Retin. Eye Res. 16:99–116, 1997.CrossRefGoogle Scholar
  29. 29.
    Hoeltzel, D. A., P. Altman, K. Buzard, and K.-I. Choe. Strip Extensiometry for Comparison of the Mechanical Response of Bovine, Rabbit, and Human Corneas. J. Biomech. Eng. 114:202–215, 1992.PubMedCrossRefGoogle Scholar
  30. 30.
    Howland, H. C., R. H. Rand, and S. R. Lubkin. A thin-shell model of the cornea and its application to corneal surgery. Refract. Corneal Surg. 8:183–186, 1992.PubMedGoogle Scholar
  31. 31.
    Iatridis, J. C., L. A. Setton, M. Weidenbaum, and V. C. Mow. The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J. Biomech. 30:1005–1013, 1997.PubMedCrossRefGoogle Scholar
  32. 32.
    Jue, B., and D. M. Maurice. The mechanical properties of the rabbit and human cornea. J. Biomech. 19:847–853, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    Kampmeier, J., B. Radt, R. Birngruber, and R. Brinkmann. Thermal and Biomechanical Parameters of Porcine Cornea. Cornea 19:355–363, 2000.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim, W., A. Argento, F. W. Rozsa, and K. Mallett. Constitutive behavior of ocular tissues over a range of strain rates. J. Biomech. Eng. 134:061002-061002, 2012.Google Scholar
  35. 35.
    Lari, D. R., D. S. Schultz, A. S. Wang, O. T. Lee, and J. M. Stewart. Scleral mechanics: comparing whole globe inflation and uniaxial testing. Exp. Eye Res. 94:128–135, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lee, R. E., and P. F. Davison. The collagens of the developing bovine cornea. Exp. Eye Res. 39:639–652, 1984.PubMedCrossRefGoogle Scholar
  37. 37.
    Lewis, P. N., C. Pinali, R. D. Young, K. M. Meek, A. J. Quantock, and C. Knupp. Structural Interactions between Collagen and Proteoglycans Are Elucidated by Three-Dimensional Electron Tomography of Bovine Cornea. Structure 18:239–245, 2010.PubMedCrossRefGoogle Scholar
  38. 38.
    Maurice, D. M. The cornea and sclera. In: The Eye, edited by H. Davason. London: Academic Press, pp. 1–184, 1984.Google Scholar
  39. 39.
    Meek, K. M. The cornea and sclera. In: Collagen: Structure and Mechanics, edited by P. Fratzl. New York: Springer, pp. 359–396, 2008.Google Scholar
  40. 40.
    Meek, K. M., N. J. Fullwood, P. H. Cooke, et al. Synchrotron x-ray diffraction studies of the cornea, with implications for stromal hydration. Biophys. J. 60:467–474, 1991.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Nigul, I., and U. Nigul. On algorithms of evaluation of Fung’s relaxation function parameters. J Biomech 20:343–352, 1987.PubMedCrossRefGoogle Scholar
  42. 42.
    Nyquist, G. W. Rheology of the cornea: experimental techniques and results. Exp. Eye Res. 7:183–188, 1968.PubMedCrossRefGoogle Scholar
  43. 43.
    Olsen, T., and S. Sperling. The swelling pressure of the human corneal stroma as determined by a new method. Exp. Eye Res. 44:481–490, 1987.PubMedCrossRefGoogle Scholar
  44. 44.
    Pandolfi, A. Computational biomechanics of the human cornea. In: Computational Modeling in Biomechanics, edited by S. De, F. GuilaK, and M. Mofrad. New York: Springer, pp. 435–466, 2010.Google Scholar
  45. 45.
    Pandolfi, A., and G. A. Holzapfel. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J. Biomech. Eng. 130:061006-061001-061006-061012, 2008.Google Scholar
  46. 46.
    Provenzano, P. P., R. S. Lakes, D. T. Corr, and R. Vanderby, Jr. Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol 1:45–57, 2002.PubMedCrossRefGoogle Scholar
  47. 47.
    Scott, J. E. Proteoglycan: collagen interactions and corneal ultrastructure. Biochem. Soc. Trans 19:877–881, 1991.PubMedGoogle Scholar
  48. 48.
    Scott, J. E. Morphometry of cupromeronic blue-stained proteoglycan molecules in animal corneas, versus that of purified proteoglycans stained in vitro, implies that tertiary structures contribute to corneal ultrastructure. J. Anat. 180:155–164, 1992.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Scott, J. E., and T. R. Bosworth. A comparative biochemical and ultrastructural study of proteoglycan-collagen interactions in corneal stroma - functional and metabolic implications. Biochem. J. 270:491–497, 1990.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Smith, T. S. T., K. D. Frick, B. A. Holden, T. R. Fricke, and K. S. Naidoo. Potential lost productivity resulting from the global burden of uncorrected refractive errors. Bull. World Health Organ. 87:431–437, 2009.Google Scholar
  51. 51.
    Sverdlik, A., and Y. Lanir. Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. Journal of Biomechanical Engineering-Transactions of the Asme 124:78–84, 2002.CrossRefGoogle Scholar
  52. 52.
    Wollensak, G., E. Spoerl, and T. Seiler. Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. J. Cataract Refract. Surg. 29:1780–1785, 2003.PubMedCrossRefGoogle Scholar
  53. 53.
    Woo, S. L., M. A. Gomez, and W. H. Akeson. The time and history-dependent viscoelastic properties of the canine medical collateral ligament. J. Biomech. Eng. 103:293–298, 1981.PubMedCrossRefGoogle Scholar
  54. 54.
    Woo, S. L., A. S. Kobayashi, W. A. Schlegel, and C. Lawrence. Nonlinear material properties of intact cornea and sclera. Exp. Eye Res. 14:29–39, 1972.PubMedCrossRefGoogle Scholar
  55. 55.
    Zeng, Y., J. Yang, K. Huang, Z. Lee, and X. Lee. A comparison of biomechanical properties between human and porcine cornea. J. Biomech. 34:533–537, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations